RECON

Noise Analysis for the Villa Serena Project, City of San Marcos, California

Prepared for
City of San Marcos
Development Services Department
Planning Division
1 Civic Center Drive
San Marcos, CA 92069
Contact: Norman Pedersen

Prepared by RECON Environmental, Inc. 1927 Fifth Avenue San Diego, CA 92101 P 619.308.9333

RECON Number 8458 October 27, 2016

Jessien Hemine

Jessica Fleming, Environmental Analyst

TABLE OF CONTENTS

Acro	onyms	s	iii			
Exe	cutive	e Summary	1			
1.0	Intr	oduction	3			
	1.1	Project Description	3			
	1.2	Fundamentals of Noise	8			
2.0	App	olicable Noise Standards	9			
	2.1	General Plan				
	2.2	Municipal Code	10			
	2.3	California Code of Regulations	11			
3.0	Exis	sting Conditions	12			
4.0		llysis Methodology				
1.0	4.1	Construction Noise Analysis				
	4.2	Traffic Noise Analysis				
	4.3	On-site Generated Noise Analysis				
5.0	Fut	ure Acoustical Environment and Impacts				
0.0	5.1	Construction Noise				
	5.2	Traffic Noise				
	5.3	On-site Generated Noise				
6.0	Con	clusions and Noise Abatement Measures	2.4			
0.0	6.1	Construction Noise				
	6.2	Traffic Noise				
	6.3	On-site Generated Noise.				
7.0		erences Cited				
7.0	1ter	erences Orteu	40			
FIGU	JRES					
1:	Regi	onal Location	3			
2:		ect Location on Aerial Photograph				
3a:		se 1 Site Plan				
3b:	Phase 2 Site Plan7					
4:	Noise Measurement Locations					
5 :		struction Noise Contours and Modeled Receivers				
6:		re Vehicle Traffic Noise Contours and Modeled Receivers				
7:	HVAC Locations and Modeled Receivers					

TABLE OF CONTENTS (cont.)

TABLES

1:	Interior and Exterior Noise Guidelines	10
2:	Municipal Code Property Line Noise Standards	11
3:	Noise Measurements	14
4:	15-minute Traffic Counts	14
5 :	Typical Construction Equipment Noise Levels	15
6:	Traffic Parameters	16
7:	Construction Noise Levels at Adjacent Property Lines	18
8:	Future Vehicle Traffic Noise Levels	20
9:	HVAC Noise Levels at Adjacent Property Lines	24

ATTACHMENTS

- 1: Noise Measurement Data
- 2: HVAC Example Specifications
- 3: SoundPLAN Data Construction Noise
- 4: SoundPLAN Data Traffic Noise
- 5: SoundPLAN Data On-Site Generated Noise

Acronyms

ADT average daily traffic

Caltrans California Department of Transportation

CCR California Code of Regulations

CEQA California Environmental Quality Act

City City of San Marcos

CNEL community noise equivalent level

dB decibel

dB(A) A-weighted decibel

FHWA Federal Highway Administration FTA Federal Transit Administration

 $\begin{array}{ll} HVAC & \text{heating, ventilating, and air conditioning} \\ ITE & Institute of Transportation Engineers} \\ L_{90} & \text{noise level exceeded 90 percent of the time} \end{array}$

L_{eq} one-hour equivalent noise level

LOS Level of Service Lpw sound power level

SANTEC San Diego Traffic Engineers' Council

Executive Summary

The proposed Villa Serena project (project) site is located at 339 and 340 Marcos Street in the Richmar Neighborhood of the city of San Marcos. The project site is currently developed with 136 one and two bedroom multi-family units. The project would demolish the existing buildings and construct 148 one-, two-, and three-bedroom multi-family units and associated parking, open space, and amenities.

This report discusses potential noise impacts from the construction and operation of the project. As part of this assessment, noise levels due to vehicle traffic were calculated and evaluated against City of San Marcos (City) noise and land use compatibility guidelines. In addition to compatibility, the potential for noise to impact adjacent uses from future on-site sources and construction activity was assessed. A summary of the findings is provided below.

Construction Noise

Construction activity is regulated by the City Municipal Code. The code limits noise by restricting construction activities to hours unlikely to impact the community. Noise associated with the grading, building, and paving for the project would potentially result in short-term impacts to surrounding residential properties. Construction noise levels would range from 53 to 75 decibels A-weighted equivalent noise level [dB(A) Leq] at the adjacent property lines. Construction activities would generally occur over the period between 7:00 a.m. and 6:00 p.m. on weekdays. Although the existing adjacent uses would be exposed to construction noise levels that may be heard above ambient conditions, the exposure would be temporary and would not exceed 75 dB(A) Leq. As construction activities associated with the project would comply with Section 10.24.020 (b)(9) of the City Municipal Code, temporary increases in noise levels from construction activities would be less than significant.

Traffic Noise

Exterior noise levels were modeled at the project site to determine compatibility with City standards. The applicable standards for multi-family uses are an exterior noise level of 65 community noise equivalent level (CNEL) and an interior noise level of 45 CNEL. The main source of noise at the project site is vehicle traffic on Mission Road, Richmar Avenue, Marcos Street, and Liberty Drive. First-floor vehicle traffic contours across the project site were calculated. Exterior traffic noise levels were also calculated at first- through third-floor receivers. The project would include exterior useable space including turf areas and tot lots north of the proposed buildings. As calculated in this analysis, exterior noise levels at the exterior use areas (Receivers 1 through 6) are projected to range from 43 to 50 CNEL. This exterior noise level would be compatible with the City's standard of 65 CNEL.

Exterior noise levels at the first-through third-floors of the building façades are projected to range from 56 to 65 CNEL. Standard wood frame construction would achieve an exterior-to-interior noise reduction of 25 dB(A) (Federal Highway Administration 2011). Thus, because exterior noise levels at the building façades would be 65 CNEL or less, interior

noise levels would be 40 CNEL or less in all habitable rooms. Interior noise levels would therefore not exceed the City standard of 45 CNEL.

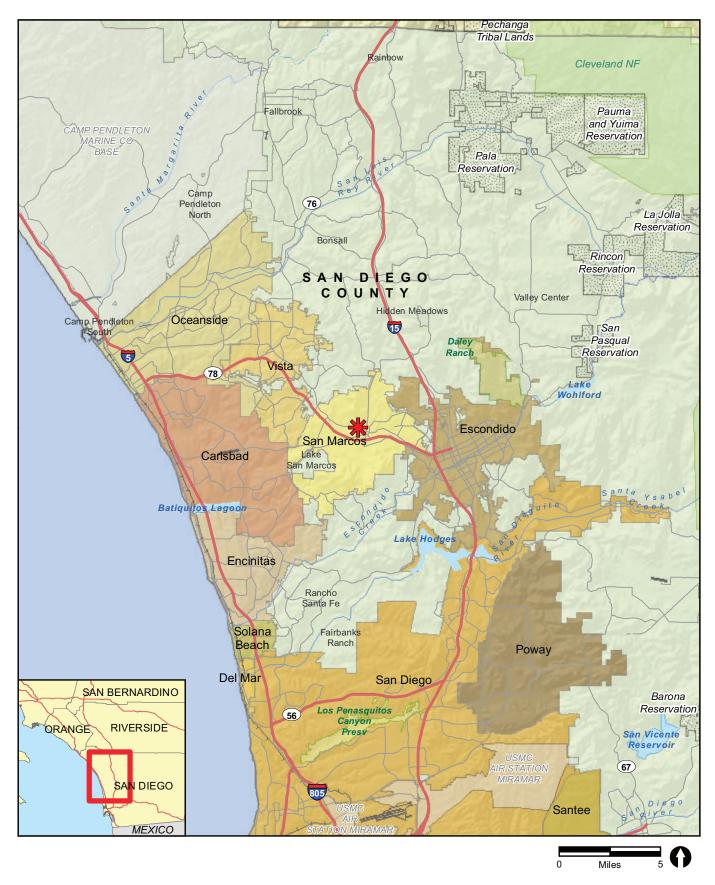
On-site Generated Noise

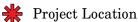
The noise sources on the project site after completion of construction are anticipated to be those that would be typical of any residential complex, such as vehicles arriving and leaving and landscape maintenance machinery. None of these noise sources are anticipated to violate the Municipal Code. Rooftop HVAC noise levels were modeled at the property line adjacent property lines. As shown, on-site generated noise levels would range from 35 to 45 dB(A) Leq. Noise levels would not exceed the applicable Noise Ordinance limits at the property lines.

1.0 Introduction

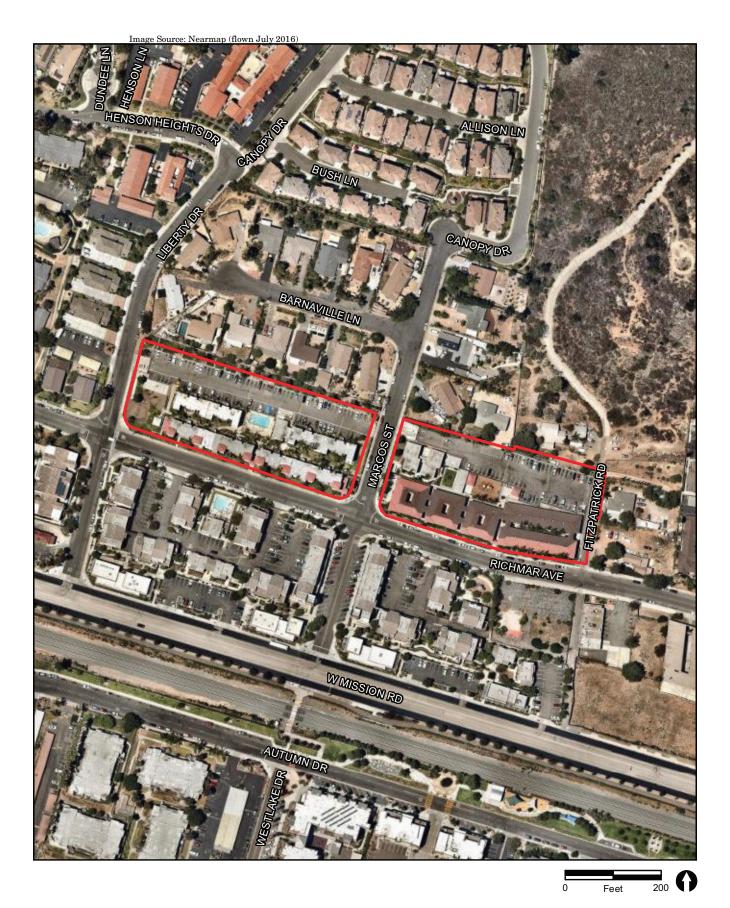
1.1 Project Description

The project is located at 339 and 340 Marcos Street in the Richmar Neighborhood of the city of San Marcos. Figure 1 shows the regional location of the project. The property consists of three parcels bordered by single-family residential uses to the north, Fitzpatrick Road to the east, Richmar Avenue to the south, and Liberty Drive to the west. The parcels are separated by Marcos Street running north and south intersecting with Richmar Avenue to the south. The Sprinter light rail transit line connecting Escondido and Oceanside is approximately one-eighth mile immediately to the south. Figure 2 shows an aerial photograph of the project and vicinity.


The project site is currently developed with 136 one and two bedroom multi-family units in two- and three-story buildings totaling approximately 102,800 square feet. The project would demolish the existing buildings and construct 148 one-, two-, and three-bedroom multi-family units and associated parking, open space, and amenities. The project would be constructed in two phases. Phase 1 would construct 84 multi-family units and 148 parking spaces at 340 Marcos Street (Figure 3a), and Phase 2 would construct 63 multi-family units and 109 parking spaces at 339 Marcos Street (Figures 3b).


The project would implement the envisioned pedestrian-scaled residential neighborhood for the Richmar Neighborhood. The is located between two Sprinter light-rail transit stations and is in close proximity to public amenities such as San Marcos Elementary School, Boys and Girls Club, and public parks.

The project's primary goals are to:


- a) Continue a multi-family residential development pattern in the center of San Marcos.
- b) Revitalize an underutilized and under-parked residential area within the Richmar Neighborhood and along the Sprinter line to the South.
- c) Provide a walkable community to reduce automobile use.
- d) Contribute to the stock of affordable housing in the City.
- e) Take advantage of the nearby transit infrastructure to facilitate ridership.

Additionally, the project would achieve a minimum Leadership in Energy & Environmental Design Gold certification by incorporating green features such as exceeding minimum Title 24 energy requirements, using solar power for common area lighting, implementing water conservation features, and implementing construction waste managements.

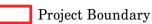
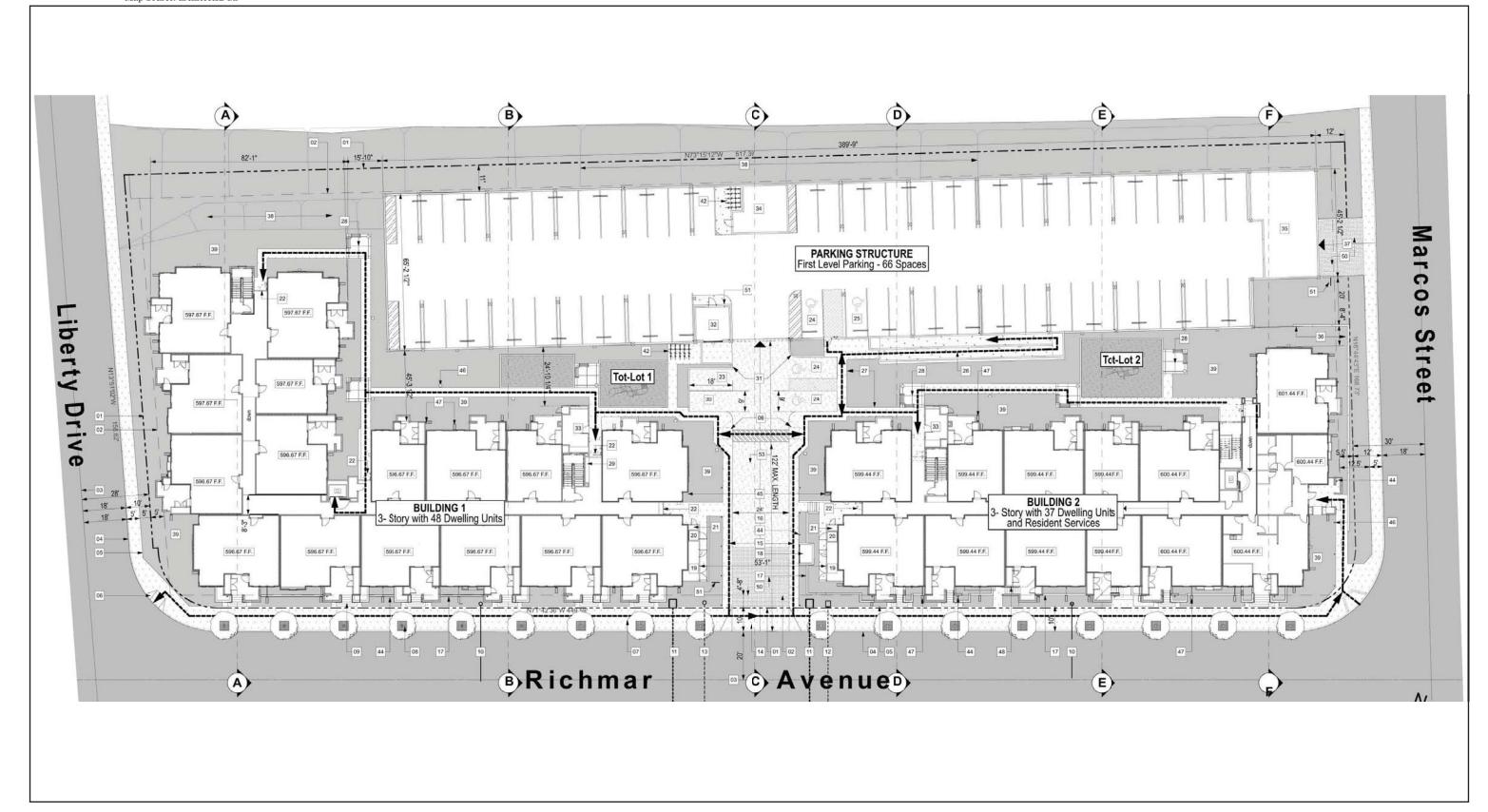
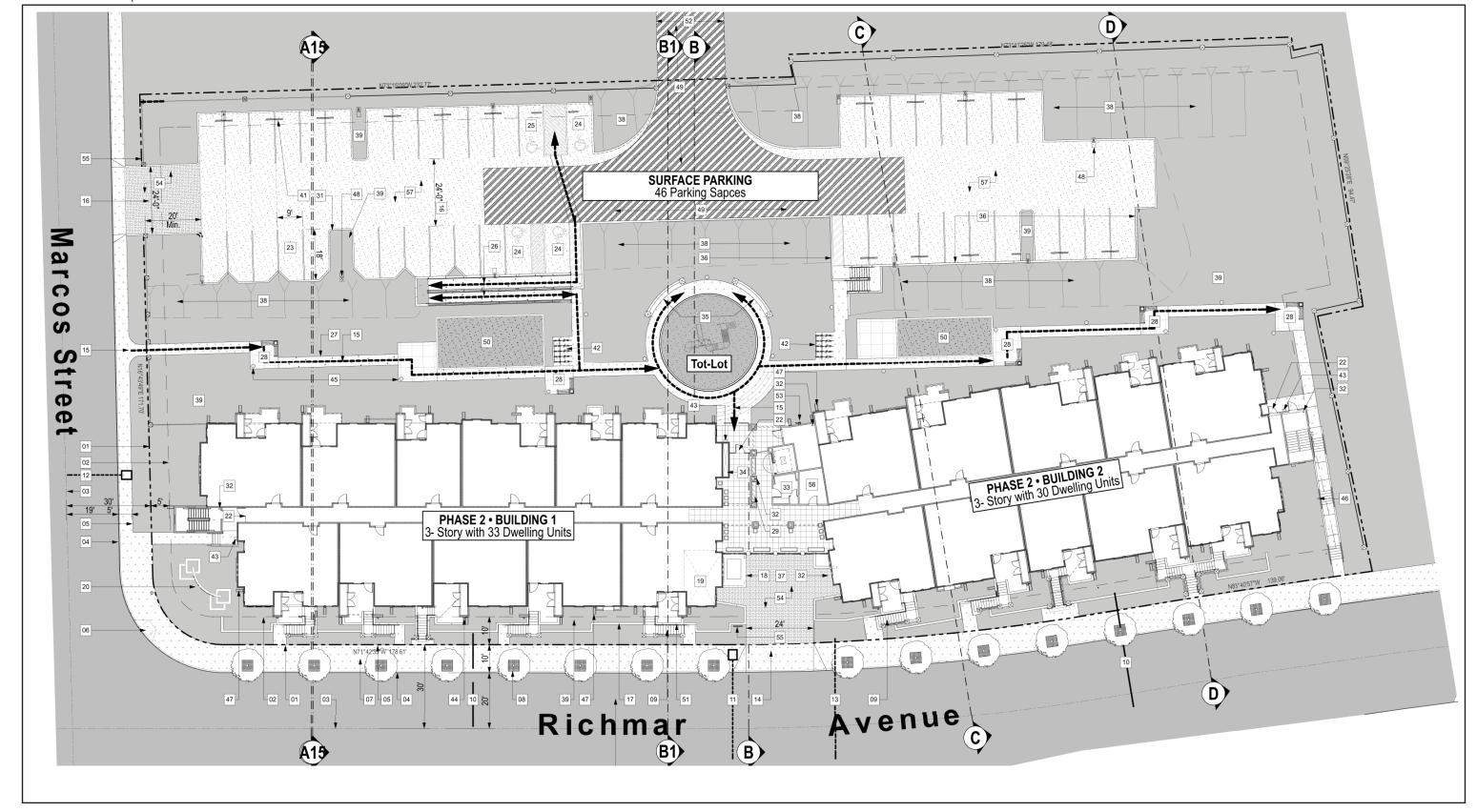




FIGURE 2

1.2 Fundamentals of Noise

Sound levels are described in units called the decibel (dB). Decibels are measured on a logarithmic scale that quantifies sound intensity in a manner similar to the Richter scale used for earthquake magnitudes. Thus, a doubling of the energy of a noise source, such as doubling of traffic volume, would increase the noise level by 3 dB; a halving of the energy would result in a 3 dB decrease. However, human perception of noise has no simple correlation with acoustical energy. A change in noise levels is generally perceived as follows: 3 A-weighted dB [dB(A)] barely perceptible, 5 dB(A) readily perceptible, and 10 dB(A) perceived as a doubling or halving of noise (California Department of Transportation 2013).

In technical terms, sound levels are described as either a "sound power level" or a "sound pressure level," which while commonly confused are two distinct characteristics of sound. Both share the same unit of measure, the dB. However, sound power, expressed as L_{pw} , is the energy converted into sound by the source. As sound energy travels through the air, it creates a sound wave that exerts pressure on receivers such as an ear drum or microphone, the sound pressure level. Sound measurement instruments only measure sound pressure, and limits used in standards are generally sound pressure levels.

The human ear is not equally sensitive to all frequencies within the sound spectrum. To accommodate this phenomenon, the A-scale, which approximates the frequency response of the average young ear when listening to most ordinary everyday sounds, was devised. When people make relative judgments of the loudness or annoyance of a sound, their judgments correlate well with the A-scale sound levels of those sounds. Therefore, the "A-weighted" noise scale is used for measurements and standards involving the human perception of noise. Noise levels using A-weighted measurements are designated with the notation dB(A).

1.1.1 Descriptors

The impact of noise is not a function of loudness alone. The time of day when noise occurs and the duration of the noise are also important. In addition, most noise that lasts for more than a few seconds is variable in its intensity. Consequently, a variety of noise descriptors has been developed. The noise descriptors used for this study are the equivalent noise level (L_{eq}) and the community noise equivalent level (CNEL).

The L_{eq} is the equivalent steady-state noise level in a stated period of time that is calculated by averaging the acoustic energy over a time period; when no period is specified, a 1-hour period is assumed.

The CNEL is a 24-hour equivalent sound level. The CNEL calculation applies an additional 5 dB(A) penalty to noise occurring during evening hours, between 7:00 p.m. and 10:00 p.m., and a 10 dB(A) penalty is added to noise occurring during the night, between 10:00 p.m. and 7:00 a.m. These increases for certain times are intended to account for the added sensitivity of humans to noise during the evening and night.

1.1.2 Propagation

Sound from a localized source (approximating a "point" source) radiates uniformly outward as it travels away from the source in a spherical pattern, known as geometric spreading. The sound level decreases or drops off at a rate of 6 dB(A) for each doubling of the distance.

Traffic noise is not a single, stationary point source of sound. The movement of vehicles makes the source of the sound appear to emanate from a line (line source) rather than a point when viewed over some time interval. The drop-off rate for a line source is 3 dB(A) for each doubling of distance.

The propagation of noise is also affected by the intervening ground, known as ground absorption. A hard site (such as parking lots or smooth bodies of water) receives no additional ground attenuation, and the changes in noise levels with distance (drop-off rate) are simply the geometric spreading of the source. A soft site (such as soft dirt, grass, or scattered bushes and trees) provides an additional ground attenuation value of 1.5 dB(A) per doubling of distance. Thus, a point source over a soft site would drop off at 7.5 dB(A) per doubling of distance.

2.0 Applicable Noise Standards

2.1 General Plan

The Noise Element of the City of San Marcos (City) General Plan provides land use compatibility guidelines to ensure that new developments are sited, designed, and constructed in such a manner that ambient noise levels would not create an unacceptable noise environment for the occupants and patrons of the new development. Table 1 provides the interior and exterior noise guidelines for various types of uses and developments.

The project proposes a multi-family residential development. As shown in Table 1, the applicable standards for multi-family uses are an exterior noise level of 65 CNEL and an interior noise level of 45 CNEL.

Table 1 Interior and Exterior Noise Guidelines				
	Maximum l (CN			
Land Use	$Interior^1$	Exterior ^{2,3}		
Residential – single-family, mobile homes, or age-restricted housing	45	60		
Residential – multi-family residences or mixed use	45	65		
Lodging—hotels, motels	45	65		
Schools, churches, hospitals, residential care facility, child-care facilities	50	65		
Passive recreational parks, nature preserves, contemplative spaces, cemeteries		65		
Active parks, golf courses, athletic fields, outdoor spectator sports, water recreation		65		
Office/professional, government, medical/dental, commercial, retail, laboratories	50	65		
Industrial, manufacturing, utilities, agriculture, mining, stables, ranching, warehouse, maintenance/repair		65		

SOURCE: City of San Marcos General Plan Update, Noise Element 2013.

CNEL – community noise equivalent level.

- ¹ Applies only to interior habitable rooms.
- ² Exterior noise standard does not apply for land uses where no exterior use area is proposed or necessary, such as a library.
- ³ For single-family detached dwelling units, "exterior noise level" is defined as the noise level measured at an outdoor living area that adjoins and is on the same lot as the dwelling.

2.2 Municipal Code

2.2.1 Title 10, Chapter 10.24 - Construction

Section 10.24.020 (b)(9) of the City Municipal Code identifies permissible hours for general construction activities. Excluding City holidays, construction may occur weekdays from 7:00 a.m. to 6:00 p.m. or Saturdays from 8:00 a.m. to 5:00 p.m. Grading is often the loudest phase of construction. Section 17.32.180 restricts grading and earthworks activities to between the hours of 7:00 a.m. and 4:30 p.m., Monday through Friday.

2.2.2 Title 20 - Zoning Ordinance

City Municipal Code Title 20 – Zoning Ordinance contains General Development Standards. Performance standards in Section 20.300.070 (f) set restrictions on noise levels by zoning. No person shall create or allow the creation of exterior noise that causes the noise level to exceed the noise standards shown in Table 2.

Table 2 Municipal Code Property Line Noise Standards					
		Allowable Property			
		Line Noise Level			
Zone	Time	$[\mathrm{dB}(\mathrm{A})\ \mathrm{L_{eq}}]$			
Single-Family Residential (A, R-1, R-2)	7:00 a.m. to 10:00 p.m.	60			
Single-Family Residential (A, IV-1, IV-2)	10:00 p.m. to 7:00 a.m.	50			
Multi-Family Residential (R-3)	7:00 a.m. to 10:00 p.m.	65			
Multi-Family Residential (R-5)	10:00 p.m. to 7:00 a.m.	55			
Commercial (C, O-P, SR)	7:00 a.m. to 10:00 p.m.	60			
Commercial (C, O-1, Sit)	10:00 p.m. to 7:00 a.m.	55			
Industrial	7:00 a.m. to 10:00 p.m.	65			
industriai	10:00 p.m. to 7:00 a.m.	60			
Source: Section 20.300.070(f) Table 20.300-4, San Marcos Municipal Code Title 20 – Zoning Code					

The project site and the properties to the north, west, and east are zoned Multi-family Residential (R-3). The properties to the southwest are zoned Mixed-Use (MU-1) and are developed with multi-family uses. The properties to the south and southeast are designated as the Paseo De Oro Specific Plan Area and are developed with multi-family uses. For the purposes of this analysis, the property line noise levels most applicable to MU-1 zones and multi-family uses within the Paseo De Oro Specific Plan Area are considered to be the noise level limits for Multi-family Residential (R-3) zones. The standards at the property line located between the project site and the adjacent properties are 65 dB(A) Leq from 7:00 a.m. to 10:00 p.m. and 55 dB(A) Leq from 10:00 p.m. to 7:00 a.m.

2.3 California Code of Regulations

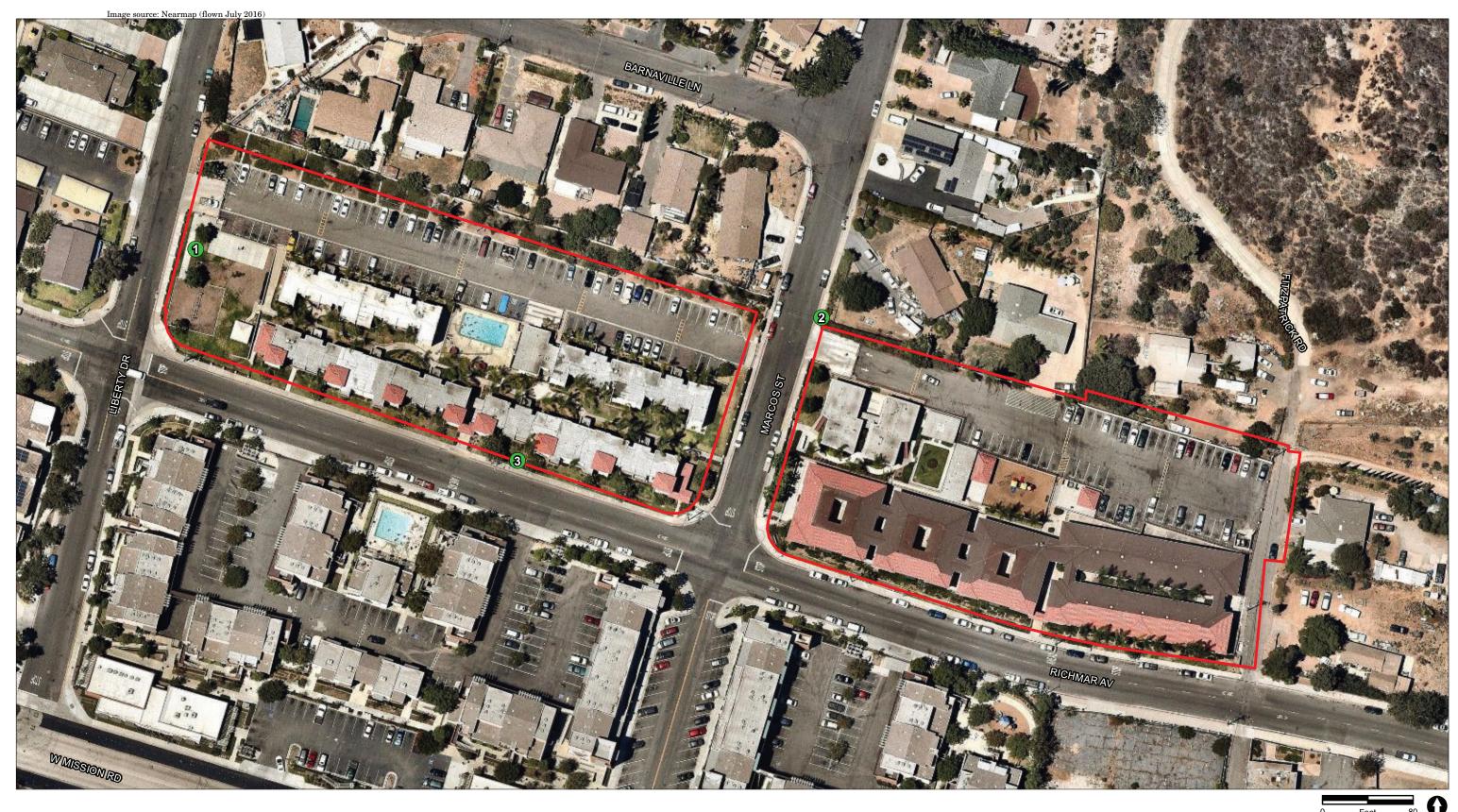
Interior noise levels for habitable rooms are regulated also by Title 24 of the California Code of Regulations (CCR), California Noise Insulation Standards. Title 24, Chapter 12, Section 1207.4, of the California Building Code requires that interior noise levels attributable to exterior sources not exceed 45 CNEL in any habitable room. A habitable room is a room used for living, sleeping, eating, or cooking. Bathrooms, closets, hallways, utility spaces, and similar areas are not considered habitable rooms for this regulation (24 CCR 1207 2013).

3.0 Existing Conditions

Existing noise levels in the vicinity of the project site were measured on October 6, 2016, using a Larson-Davis Model LxT, Type 1 Integrating Sound Level Meter, serial number 3827. The following parameters were used:

Filter: A-weighted

Response: Slow
Interval Period 1 minute
Time History Period: 5 seconds


The meter was calibrated before and after each measurement. The meter was set 5 feet above the ground level for each measurement.

Noise measurements were taken to obtain typical ambient noise levels at the project site and in the vicinity. The warm and sunny with a slight breeze, zero to three miles per hour on average. Three 15-minute measurements were taken, as described below. The primary sources of on-site noise were due to traffic on area roadways including Richmar Avenue and Mission Road. Secondary sources of noise were the Sprinter and air traffic. The measurement locations are shown on Figure 4, and detailed data is contained in Attachment 1.

Measurement 1 was on the playground near the western boundary of the project site, 25 feet east of the edge of Liberty Drive. The main noise source at this location was vehicle traffic on Richmar Avenue. Secondary sources of noise were vehicle traffic on Liberty Drive and Mission Road, the Sprinter, air craft, and pedestrians.

Measurement 2 was located north of the project boundary, east of Marcos Street. The main noise source at this location was vehicle traffic on Mission Road. Secondary sources of noise were vehicle traffic on Marcos Street, Richmar Avenue, and Liberty Drive, the Sprinter, and air craft.

Measurement 3 was located at the project boundary north of Richmar Avenue between Liberty Drive and Marcos Street. The main noise source at this location was vehicle traffic on Richmar Avenue. Secondary sources of noise included aircraft.

☐ F

Project Boundary

Noise Measurement Location

Noise measurements are summarized in Table 3. Traffic counts conducted during Measurements 1, 2, and 3 are summarized in Table 4.

Table 3 Noise Measurements							
Measurement	Location	Time	Noise Sources	L_{eq}	L_{90}		
1	25 feet east of Liberty Drive	11:42 a.m.–11:57 a.m.	Richmar Avenue, Liberty Drive, Mission Road, Sprinter, air craft	55.0	43.9		
2	5 feet east of Marcos Street	12:06 p.m.–12:21 p.m.	Mission Road, Marcos Street, Richmar Avenue, Liberty Drive, Sprinter, air craft	51.2	42.4		
3	10 feet north of Richmar Avenue	12:28 p.m.–12:43 p.m.	Richmar Avenue, air craft	56.8	44.6		

L₉₀ = Noise level exceeded 90 percent of the time.

Note: Noise measurement data is contained in Attachment 1.

Table 4 15-minute Traffic Counts							
				Medium	Heavy		
Measurement	Roadway	Direction	Autos	Trucks	Trucks	Buses	Motorcycles
1	Liberty Drive	Southbound	9	0	0	0	1
1		Northbound	4	0	0	0	0
2	Managa Charat	Southbound	9	0	0	0	0
2	Marcos Street	Northbound	1	0	0	0	0
9	D: 1 4	Westbound	8	1	0	0	0
3	Richmar Avenue	Eastbound	12	1	0	0	0

4.0 Analysis Methodology

4.1 Construction Noise Analysis

Project construction noise would be generated by diesel engine-driven construction equipment used for site preparation and grading, removal of existing structures and pavement, loading, unloading, and placing materials and paving. Diesel engine-driven trucks also would bring materials to the site and remove the soils from excavation.

Construction equipment with a diesel engine typically generates maximum noise levels from 80 to 90 dB(A) L_{eq} at a distance of 50 feet (Federal Transit Administration [FTA] 2006). Table 5 summarizes typical construction equipment noise levels.

	Table 5				
Typical Construction Equipment Noise Levels					
Noise Level at 50 Fee					
Equipment	[dB(A) L _{eq}]				
Air Compressor	81				
Backhoe	80				
Compactor	82				
Concrete Mixer	85				
Crane	81				
Dozer	85				
Excavator	81				
Grader	85				
Jack Hammer	88				
Loader	85				
Paver	89				
Pump	76				
Roller	74				
Scraper	89				
Truck	88				
SOURCE: FTA 2006.					

During excavation, grading, and paving operations, equipment moves to different locations and goes through varying load cycles, and there are breaks for the operators and for non-equipment tasks, such as measurement. Although maximum noise levels may be 85 to 90 dB(A) at a distance of 50 feet during most construction activities, hourly average noise levels from the grading phase of construction would be 82 dB(A) L_{eq} at 50 feet from the center of construction activity when assessing the loudest pieces of equipment working simultaneously.

4.2 Traffic Noise Analysis

Noise generated by future traffic was modeled using SoundPLAN Essential, version 3.0. The SoundPLAN program (Navcon Engineering 2015) uses the Federal Highway Administration's (FHWA) Traffic Noise Model algorithms and reference levels to calculate noise levels at selected receiver locations. The model uses various input parameters, such as projected hourly average traffic rates; vehicle mix, distribution, and speed; roadway lengths and gradients; distances between sources, barriers, and receivers; and shielding provided by intervening terrain, barriers, and structures. Receivers, roadways, and barriers were input into the model using three-dimensional coordinates. The locations of future buildings were obtained from project plans and drawings.

The main source of noise at the project site is vehicle traffic on Mission Road, Richmar Avenue, Marcos Street, and Liberty Drive. For the purpose of traffic noise compatibility analysis, the noisiest condition is represented as the maximum level of service (LOS) C traffic volume. This condition represents a condition where the maximum number of vehicles are using the roadway at the maximum speed. LOS A and B categories allow full travel speed but do not have as many vehicles, while LOS E and F have a greater number

of vehicles, but due to the traffic volume travel at reduced speeds, thus generating less noise. Mission Road is a 4-lane major arterial with a maximum LOS C capacity of 32,000 average daily traffic (ADT) and Richmar Avenue is a 2-lane collector with a maximum LOS C capacity of 6,400 ADT (City of San Marcos 2012).

Marcos Street and Liberty Drive are both 2-lane residential, non-mobility element roadways. Levels of service are not applied to residential streets since their primary purpose is to serve abutting lots, not carry through traffic. The future traffic volume for Marcos Street was obtained from the San Diego Association of Governments (SANDAG) Transportation Forecast Information Center. According to SANDAG, the portion of Marcos Street south of the project site has a future volume of 5,100 ADT (SANDAG 2016). No volume is provided for the portion of Marcos Street adjacent to the project site because it does not carry a significant amount of traffic; therefore, a future volume of 5,100 ADT was modeled for the entire length of Marcos Street. No volume is provided for the entire segment of Liberty Drive either. Residential roads generally have an LOS C capacity of 1,500 ADT or less (San Diego Traffic Engineers' Council [SANTEC]/Institute of Transportation Engineers [ITE] 2000). A future traffic volume of 1,500 ADT was modeled for Liberty Drive.

Traffic noise levels are calculated based on the peak-hour traffic volumes, which based on traffic counts conducted along Mission Road is approximately 10 percent of the ADT volume (RBF Consulting 2015). Based on the traffic count data for Mission Road the predicted CNEL is 0.2 to 0.5 dB(A) lower than the peak-hourly $L_{\rm eq}$ calculated. Thus, using the peak hour noise level to assess the on-site noise levels is conservative.

Due to the limited traffic during noise measurements, the field data could not be used to support a location specific vehicle classification mix for the adjacent roadways. Thus, based on data collected in the San Diego region for similar roadways, a conservative vehicle classification mix of 94.5 percent automobiles, 3 percent medium trucks, 1 percent heavy trucks, 1 percent buses, and 0.5 percent motorcycles was modeled. Table 6 summarizes the traffic volumes and vehicle classification mixes for the modeled roadways.

Table 6 Traffic Parameters							
				Vel	nicle Mix (P	ercent)	
				Medium	Heavy		
Roadway	Modeled ADT	Speed	Autos	Trucks	Trucks	Buses	Motorcycles
Mission Road	32,000	45	94.5	3.0	1.0	1.0	0.5
Richmar Avenue	6,400	35	94.5	3.0	1.0	1.0	0.5
Liberty Drive	1,500	25	94.5	3.0	1.0	1.0	0.5
Marcos Street	5,100	25	94.5	3.0	1.0	1.0	0.5

4.3 On-site Generated Noise Analysis

The noise sources on the project site after completion of construction are anticipated to be those that would be typical of any residential complex, such as vehicles arriving and

leaving, children at play, and landscape maintenance machinery. None of these noise sources are anticipated to violate the San Marcos Municipal Code or result in a substantial permanent increase in existing noise levels. However, the project would include split-system residential heating, ventilation, and air conditioning (HVAC) units with an interior air handler mounted within the ceiling areas of each dwelling unit and a condenser unit mounted on the roof, concealed from view by the surrounding parapet roof walls. The condensers mounted on the roofs have the potential to produce noise in excess of City limits (see Table 2).

It is not known at this time which manufacturer, brand, or model of unit or units would be selected for use in the project. For the purposes of this analysis, to determine what general noise levels the HVAC units would generate, it was assumed that the rooftop units would be similar to a Trane split system unit with a sound power level of 72 dB(A). The unit specification sheets are included in Attachment 2.

Noise levels due to on-site sources were modeled using SoundPLAN. The SoundPLAN program models noise propagation following the International Organization for Standardization method ISO 9613-2 – Acoustics, Attenuation of Sound during Propagation Outdoors. The model calculates noise levels at selected receiver locations using input parameter estimates such as total noise generated by each noise source; distances between sources, barriers, and receivers; and shielding provided by intervening structures.

5.0 Future Acoustical Environment and Impacts

5.1 Construction Noise

Noise associated with the grading, building, and paving for the project would potentially result in short-term impacts to surrounding residential properties. There are residential uses located adjacent the project site. A variety of noise-generating equipment would be used during the construction phase of the project, such as excavators, backhoes, front-end loaders, and concrete saws, along with others. The exact number and pieces of construction equipment required are not known at this time. Maximum noise levels may be 85 to 90 dB(A) at a distance of 50 feet during most construction activities. Construction noise is considered a point source and would attenuate at approximately 6 dB(A) for every doubling of distance. The closest residential property line is approximately 180 feet from the center of the project site. Maximum construction noise levels of 85 to 90 dB(A) at 50 feet would attenuate to 74 to 79 dB(A) at 180 feet. However, hourly average noise levels would be lower when taking into account the equipment usage factors. For the project, the loudest phase of construction would be the excavation phase and would include dozers, loaders, and excavators. Construction noise levels were calculated based on all three pieces of equipment being active simultaneously.

As discussed in Section 4.1, hourly average noise levels associated with the grading phase of construction would be 82 dB(A) L_{eq} at 50 feet, or a sound power level of approximately

114 dB(A) from the center of construction activity when assessing the loudest pieces of equipment working simultaneously. To reflect the nature of grading and construction activities, equipment was modeled as an area source distributed over the project footprint for each phase. The total sound energy of the area source was modeled with all pieces of equipment operating simultaneously. Noise levels were modeled at a series of 25 receivers located at the adjacent residential uses. The results are summarized in Table 7. Modeled receiver locations and construction noise contours are shown in Figure 5. SoundPLAN data is contained in Attachment 3.

Table 7 Construction Noise Levels at Adjacent Property Lines						
Noise Level [dB(A) L_{eq}]						
Receiver	Phase 1	Phase 2				
1	68	53				
2	69	54				
3	72	54				
4	72	55				
5	73	57				
6	73	58				
7	73	59				
8	73	61				
9	72	64				
10	66	70				
11	63	73				
12	59	74				
13	56	75				
14	54	75				
15	54	70				
16	54	65				
17	56	69				
18	58	70				
19	62	69				
20	68	63				
21	69	59				
22	69	58				
23	69	56				
24	68	54				
25	64	53				

As shown, although maximum construction noise levels may range from 74 to 79 dB(A) at the nearest residential property line, average construction noise levels would range from 53 to 75 dB(A) L_{eq} at the adjacent property lines. Construction activities would generally occur over the period between 7:00 a.m. and 6:00 p.m. on weekdays. Although the existing adjacent uses would be exposed to construction noise levels that may be heard above ambient conditions, the exposure would be temporary and would not exceed 75 dB(A) L_{eq} . As construction activities associated with the project would comply with the time limits established in Section 10.24.020 (b)(9) of the City Municipal Code, temporary increases in noise levels from construction activities would be less than significant.

---- 65 dB(A) Leq

---- 70 dB(A) Leq

---- 75 dB(A) Leq

FIGURE 5

Construction Noise Contours and Modeled Receivers

5.2 Traffic Noise

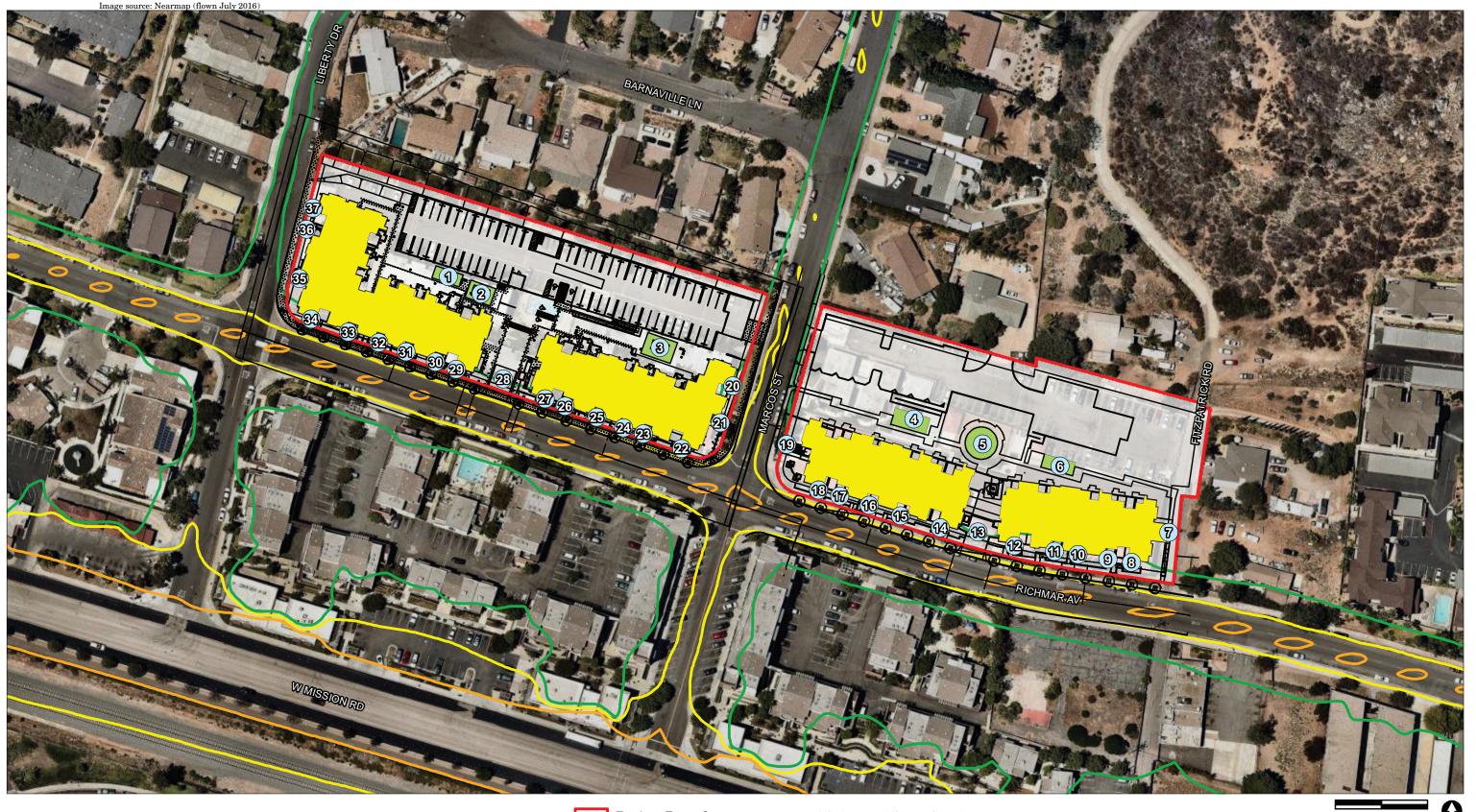
On-site traffic noise contours were developed using the SoundPLAN program. Noise level contours were modeled at the first-floor level. These contours take into account shielding provided by proposed and adjacent buildings and topography. Future vehicle traffic noise-level contours are shown in Figure 6. SoundPLAN data are contained in Attachment 4. As shown in Figure 6, first-floor exterior noise levels are projected to be less than 65 CNEL across the entire project site.

As discussed in Section 2.1, the exterior noise level standard for multi-family uses is 65 CNEL. This standard is applicable at exterior use areas including the turf play areas and the tot lots. The interior noise levels standard for multi-family uses is 45 CNEL. To refine the noise analysis and determine noise levels at exterior use areas and building façades, exterior noise levels were calculated at a series of first-through third-floor specific receiver locations throughout the project site. Modeled receiver locations are shown in Figure 6. Modeled noise levels at the exterior use areas (Receivers 1 through 6) were used to determine compatibility with the City's exterior noise standard of 65 CNEL. Modeled noise levels at the first-through third-floor building façade receivers (Receivers 7 through 37) were used to determine the compatibility with the City's interior noise standard of 45 CNEL. Table 8 summarizes the projected future noise levels at the 37 modeled receivers.

	Table 8						
	Future Vehicle Traffic Noise Levels						
		Exteri	or Noise Level (CNEL)			
Receiver	Locations	First Floor	Second Floor	Third Floor			
1	Exterior Use Area – Turf Play Area	44					
2	Exterior Use Area – Tot Lot	44					
3	Exterior Use Area – Tot Lot	48					
4	Exterior Use Area – Turf Play Area	48					
5	Exterior Use Area – Tot Lot	50					
6	Exterior Use Area – Turf Play Area	43					
7	Phase 2, Building 2 Façade	56	59	59			
8	Phase 2, Building 2 Façade	62	63	64			
9	Phase 2, Building 2 Façade	62	63	64			
10	Phase 2, Building 2 Façade	62	63	64			
11	Phase 2, Building 2 Façade	62	63	64			
12	Phase 2, Building 2 Façade	62	64	64			
13	Phase 2, Buildings 1 and 2 Façade	60	61	62			
14	Phase 2, Building 1 Façade	63	64	64			
15	Phase 2, Building 1 Façade	63	64	64			
16	Phase 2, Building 1 Façade	63	64	64			
17	Phase 2, Building 1 Façade	63	64	64			
18	Phase 2, Building 1 Façade	63	64	64			
19	Phase 2, Building 1 Façade	61	62	62			
20	Phase 1, Building 2 Façade	61	62	62			
21	Phase 1, Building 2 Façade	62	63	63			
22	Phase 1, Building 2 Façade	64	65	65			
23	Phase 1, Building 2 Façade	63	65	65			
24	Phase 1, Building 2 Façade	63	65	65			
25	Phase 1, Building 2 Façade	63	64	64			
26	Phase 1, Building 2 Façade	63	64	64			

Table 8 Future Vehicle Traffic Noise Levels						
		Exteri	or Noise Level (CNEL)		
Receiver	Locations	First Floor	Second Floor	Third Floor		
27	Phase 1, Building 2 Façade	63	64	64		
28	Phase 1, Buildings 1 and 2 Façade	60	61	62		
29	Phase 1, Building 1 Façade	63	64	64		
30	Phase 1, Building 1 Façade	63	64	64		
31	Phase 1, Building 1 Façade	62	64	64		
32	Phase 1, Building 1 Façade	62	64	64		
33	Phase 1, Building 1 Façade	62	64	64		
34	Phase 1, Building 1 Façade	63	64	64		
35	Phase 1, Building 1 Façade	59	61	61		
36	Phase 1, Building 1 Façade	58	59	59		
37	Phase 1, Building 1 Façade	57	58	59		
CNEL = co	mmunity noise equivalent level.					

As shown, exterior noise levels at the exterior use areas (Receivers 1 through 6) are projected to range from 43 to 50 CNEL. This exterior noise level would be compatible with the City's standard of 65 CNEL.


Exterior noise levels at the first-through third-floors of the building façades are projected to range from 56 to 65 CNEL. The interior noise level standard for habitable rooms in residential land uses is 45 CNEL. Standard wood frame construction would achieve an exterior-to-interior noise reduction of 25 dB(A) (FHWA 2011). Thus, because exterior noise levels at the building façades would be 65 CNEL or less, interior noise levels would be 40 CNEL or less in all habitable rooms. Interior noise levels would therefore not exceed the City standard of 45 CNEL.

5.3 On-site Generated Noise

The primary noise sources on-site would be HVAC equipment. HVAC units with exterior condensers mounted on the roofs have the potential to produce noise in excess of City limits (see Table 2). Using the on-site noise source parameters discussed in Section 4.3, noise levels were modeled at a series of 25 receivers located at the property line. Modeled noise levels took into account shielding provided by the three-foot parapet roof walls. HVAC units locations were obtained from the roof plans for the project. Noise generated by HVAC equipment would occur on an intermittent basis, primarily during the day and evening hours and less frequently during the nighttime hours. For a worst-case analysis, it was assumed that the HVAC units would operate continuously.

Modeled receivers and the locations of the HVAC units are shown in Figure 7. Modeled data is included in Attachment 5. Future projected noise levels are summarized in Table 9.

As shown, on-site generated noise levels would range from 35 to 45 dB(A) L_{eq}. Noise levels would not exceed the applicable Noise Ordinance limits at the property lines.

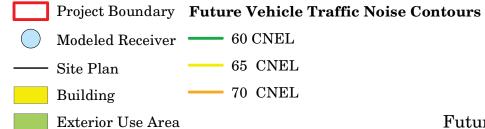
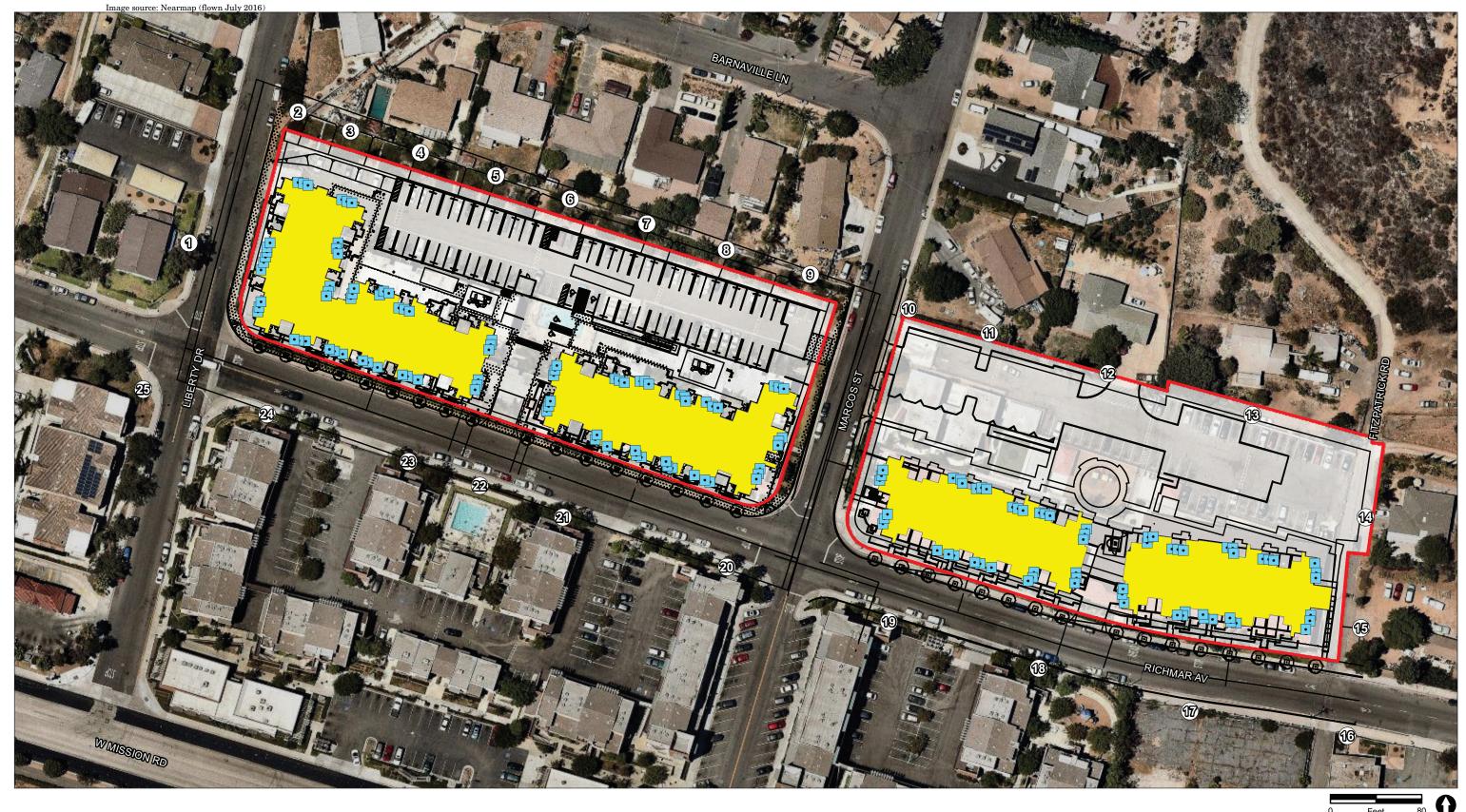



FIGURE 6

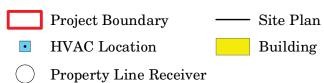


FIGURE 7

Table 9						
HVAC Noise Levels						
at Adjacent Property Lines						
Receiver	Noise Level [dB(A) L _{eq}]					
1	37					
2	40					
3	42					
4	42					
5	42					
6	42					
7	42					
8	42					
9	42					
10	41					
11	42					
12	42					
13	41					
14	39					
15	35					
16	36					
17	38					
18	40					
19	39					
20	40					
21	40					
22	40					
23	40					
24	39					
25	38					

6.0 Conclusions and Noise Abatement Measures

6.1 Construction Noise

Construction noise levels would range from 53 to 75 dB(A) L_{eq} at the adjacent property lines. Construction activities would generally occur over the period between 7:00 a.m. and 6:00 p.m. on weekdays. Although the existing adjacent uses would be exposed to construction noise levels that may be heard above ambient conditions, the exposure would be temporary and would not exceed 75 dB(A) L_{eq} . As construction activities associated with the project would comply with Section 10.24.020 (b)(9) of the City Municipal Code, temporary increases in noise levels from construction activities would be less than significant.

6.2 Traffic Noise

The main source of noise at the project site is vehicle traffic on Mission Road, Richmar Avenue, Marcos Street, and Liberty Drive. As calculated in this analysis, exterior noise levels at the exterior use areas (Receivers 1 through 6) are projected to range from 43 to 56 CNEL. This exterior noise level would be compatible with the City's standard of 65 CNEL.

Exterior noise levels at the first-through third-floors of the building façades are projected to range from 56 to 65 CNEL. Standard wood frame construction would achieve an exterior-to-interior noise reduction of 25 dB(A) (FHWA 2011). Thus, because exterior noise levels at the building façades would be 65 CNEL or less, interior noise levels would be 40 CNEL or less in all habitable rooms. Interior noise levels would therefore not exceed the City standard of 45 CNEL.

6.3 On-site Generated Noise

The noise sources on the project site after completion of construction are anticipated to be those that would be typical of any residential complex, such as vehicles arriving and leaving and landscape maintenance machinery. None of these noise sources are anticipated to violate the Municipal Code. Rooftop HVAC noise levels were modeled at the property line adjacent property lines. As shown, on-site generated noise levels would range from 35 to 45 dB(A) L_{eq}. Noise levels would not exceed the applicable Noise Ordinance limits at the property lines.

7.0 References Cited

California Code of Regulations (CCR)

2013 California Building Code, California Code of Regulations, Title 24, Chapter 12 Interior Environment, Section 1207, Sound Transmission. Effective Date: January 1, 2014.

California Department of Transportation (Caltrans)

2013 Technical Noise Supplement. November.

Federal Highway Administration (FHWA)

2011 Highway Traffic Noise: Analysis and Abatement Guidance. FHWA-HEP-10-025. December 2011.

Federal Transit Administration (FTA)

2006 Transit Noise and Vibration Impact Assessment. Office of Planning and Environment. FTA-VA-90-1003-06. May 2006.

Navcon Engineering, Inc.

2015 SoundPLAN Essential version 3.0

RBF Consulting

2015 San Marcos Highlands Traffic Impact Analysis Report. Prepared for the City of San Marcos. Final February 17, 2015.

San Diego Association of Governments (SANDAG)

2016 Transportation Forecast Information Center. Accessed at http://tfic.sandag.org/. October 14, 2016.

San Diego Traffic Engineers' Council/Institute of Transportation Engineers (SANTEC/ITE) 2000 Guidelines for Traffic Impact Studies (TIS) in the San Diego Region. March 2, 2000.

San Marcos, City of

2012 Draft Environmental Impact Report for the City of San Marcos General Plan. 2012.

ATTACHMENTS

ATTACHMENT 1 Noise Measurement Data

8458 Villa Serena Noise Measurement Data

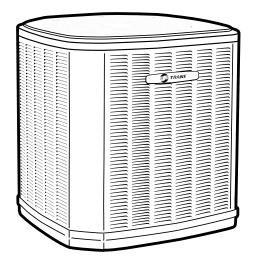
Summary Filename	LxT_Data.114		
Serial Number Model	3827 SoundExpert™ LxT		
Firmware Version User	2.206		
Location Job Description			
Note			
Measurement Description Start	2016/10/06 11:41:48		
Stop	2016/10/06 11:56:57		
Duration Run Time	0:15:09.5 0:15:09.5		
Pause	0:00:00.0		
Pre Calibration	2016/10/06 11:40:08		
Post Calibration Calibration Deviation	None 		
Overall Settings			
RMS Weight	A Weighting		
Peak Weight Detector	A Weighting Slow		
Preamp	PRMLxT1L		
Microphone Correction Integration Method	Off Linear		
OBA Range	Normal		
OBA Bandwidth OBA Freq. Weighting	1/1 and 1/3 A Weighting		
OBA Max Spectrum	At Lmax		
Overload	121.6 dB A	\mathbf{C}	${f z}$
Under Range Peak	77.9	74.9	79.9 dB
Under Range Limit Noise Floor	25.9 16.2	25.2 16.0	31.9 dB 21.9 dB
Results			
LAeq LAE	55.0 dB 84.6 dB		
EA	32.056 μPa²h		
LApeak (max) LASmax	2016/10/06 11:55:14 2016/10/06 11:55:15	88.9 dB 75.1 dB	
LASmin	2016/10/06 11:43:30	41.0 dB	
SEA	-99.9 dB		
LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration)	0 0	0.0 s 0.0 s	
LApeak > 135.0 dB (Exceedence Counts / Duration)	0	0.0 s	
LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration)	0	0.0 s 0.0 s	
Community Noise	Ldn LDay 07 55.0	:00-22:00 55.0	
LCeq	64.6 dB		
LAeq LCeq - LAeq	55.0 dB 9.5 dB		
LAIeq	57.5 dB		
LAeq LAIeq - LAeq	55.0 dB 2.5 dB		
# Overloads	0		
Overload Duration # OBA Overloads	0.0 s 0		
OBA Overload Duration	0.0 s		
Statistics			
LAS5.00 LAS10.00	59.9 dB 56.8 dB		
LAS33.30	49.3 dB		
LAS50.00	47.5 dB		
LAS66 60			
LAS66.60 LAS90.00	46.2 dB 43.9 dB		

8458 Villa Serena Noise Measurement Data

Summary			
Filename Serial Number	LxT_Data.115 3827		
Model	SoundExpert™ LxT		
Firmware Version	2.206		
User Location			
Job Description			
Note			
Measurement Description Start	2016/10/06 12:05:37		
Stop	2016/10/06 12:20:48		
Duration	0:15:11.1		
Run Time Pause	0:15:11.1 0:00:00.0		
1 dusc	0.00.00.0		
Pre Calibration	2016/10/06 12:04:38		
Post Calibration Calibration Deviation	None 		
Overall Settings RMS Weight	A W:		
Peak Weight	A Weighting A Weighting		
Detector	Slow		
Preamp Microphone Correction	PRMLxT1L Off		
Integration Method	Linear		
OBA Range	Normal		
OBA Bandwidth OBA Freq. Weighting	1/1 and 1/3 A Weighting		
OBA Max Spectrum	At Lmax		
Overload	121.6 dB		
Under Range Peak	A 77.8	C 74.8	Z 79.8 dB
Under Range Limit	25.9	74.8 25.2	31.9 dB
Noise Floor	16.2	16.0	21.9 dB
Results			
LAeq	51.2 dB		
LAE	80.8 dB		
	19 971D-21		
EA LApeak (max)	13.371 μPa²h 2016/10/06 12:19:15	100.6 dB	
EA LApeak (max) LASmax	2016/10/06 12:19:15 2016/10/06 12:19:15	69.7 dB	
EA LApeak (max) LASmax LASmin	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49		
EA LApeak (max) LASmax	2016/10/06 12:19:15 2016/10/06 12:19:15	69.7 dB	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration)	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB	69.7 dB 41.1 dB 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration)	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB	69.7 dB 41.1 dB 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration)	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB	69.7 dB 41.1 dB 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration)	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration)	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0 0 Ldn LDay 0 51.2	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0 0 0 Ldn LDay 0 51.2 62.0 dB	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0 0 Ldn LDay 0 51.2	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LCeq - LAeq LAeq LAeq LAeq	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0 0 0 Ldn LDay 0 51.2 62.0 dB 51.2 dB 10.8 dB 58.8 dB	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAeq LAeq LAeq	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0 0 0 Ldn LDay 0 51.2 62.0 dB 51.2 dB 10.8 dB 58.8 dB 51.2 dB	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LCeq - LAeq LAeq LAeq LAeq	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0 0 0 Ldn LDay 0 51.2 62.0 dB 51.2 dB 10.8 dB 58.8 dB	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAleq LAleq LAleq LAleq LAleq - LAeq # Overloads Overload Duration	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0 0 Ldn LDay 0 51.2 62.0 dB 51.2 dB 10.8 dB 58.8 dB 51.2 dB 7.6 dB 0 0.00 s	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAleq LAleq LAleq LAleq LAleq LAleq LAleq - LAeq # Overloads Overload Duration # OBA Overloads	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0 0 Ldn LDay 0 51.2 62.0 dB 51.2 dB 10.8 dB 58.8 dB 51.2 dB 7.6 dB 0 0.0 s	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAeq LAleq - LAeq LAleq - LAeq # Overloads Overload Duration # OBA Overloads OBA Overload Duration	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0 0 Ldn LDay 0 51.2 62.0 dB 51.2 dB 10.8 dB 58.8 dB 51.2 dB 7.6 dB 0 0.00 s	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAleq LAleq LAleq - LAeq LAleq - LAeq # Overloads Overload Duration # OBA Overloads OBA Overload Duration Statistics	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0 0 0 Edn LDay 0 51.2 62.0 dB 51.2 dB 10.8 dB 58.8 dB 51.2 dB 7.6 dB 0 0.0 s 0 0.0 s	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAeq LAleq - LAeq LAleq - LAeq # Overloads Overload Duration # OBA Overloads OBA Overload Duration	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0 0 Ldn LDay 0 51.2 62.0 dB 51.2 dB 10.8 dB 58.8 dB 51.2 dB 7.6 dB 0 0.0 s	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAleq - LAeq LAleq - LAeq W Overloads Overload Duration # OBA Overloads OBA Overload Duration Statistics LAS5.00 LAS10.00 LAS33.30	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0 0 0 0 Edn LDay 0 51.2 62.0 dB 51.2 dB 10.8 dB 58.8 dB 51.2 dB 7.6 dB 0 0.0 s 0 0.0 s 57.7 dB 54.4 dB 47.8 dB	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAleq - LAeq # Overloads Overload Duration # OBA Overloads OBA Overloads OBA Overload Duration Statistics LAS5.00 LAS10.00 LAS33.30 LAS50.00	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0 0 0 0 Edn LDay 0 51.2 62.0 dB 51.2 dB 10.8 dB 58.8 dB 51.2 dB 7.6 dB 0 0.0 s 0 0.0 s 57.7 dB 54.4 dB 47.8 dB 47.8 dB	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAleq - LAeq LAleq - LAeq W Overloads Overload Duration # OBA Overloads OBA Overload Duration Statistics LAS5.00 LAS10.00 LAS33.30	2016/10/06 12:19:15 2016/10/06 12:19:15 2016/10/06 12:09:49 -99.9 dB 0 0 0 0 0 0 Edn LDay 0 51.2 62.0 dB 51.2 dB 10.8 dB 58.8 dB 51.2 dB 7.6 dB 0 0.0 s 0 0.0 s 57.7 dB 54.4 dB 47.8 dB	69.7 dB 41.1 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	

8458 Villa Serena Noise Measurement Data

Summary			
Filename	LxT_Data.116		
Serial Number	3827		
Model	SoundExpert™ LxT		
Firmware Version User	2.206		
Location			
Job Description			
Note			
Measurement Description			
Start	2016/10/06 12:27:36		
Stop Duration	2016/10/06 12:42:37 0:15:00.8		
Run Time	0:15:00.8		
Pause	0:00:00.0		
B. C. III			
Pre Calibration Post Calibration	2016/10/06 12:26:58 None		
Calibration Deviation	None		
Overall Settings			
RMS Weight Peak Weight	A Weighting A Weighting		
Detector	Slow		
Preamp	PRMLxT1L		
Microphone Correction	Off		
Integration Method	Linear		
OBA Range OBA Bandwidth	Normal 1/1 and 1/3		
OBA Freq. Weighting	A Weighting		
OBA Max Spectrum	At Lmax		
Overload	121.5 dB		
II. I D D 1	A	C	Z
Under Range Peak Under Range Limit	$77.7 \\ 25.9$	74.7 25.1	79.7 dB 31.9 dB
Noise Floor	16.2	16.0	21.8 dB
D 1:			
Results LAcq	56 8 dB		
LAeq	56.8 dB 86.4 dB		
	56.8 dB 86.4 dB 48.240 μPa²h		
LAeq LAE EA LApeak (max)	86.4 dB	90.8 dB	
LAeq LAE EA LApeak (max) LASmax	86.4 dB 48.240 µPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34	75.3 dB	
LAeq LAE EA LApeak (max) LASmax LASmin	86.4 dB 48.240 µPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14		
LAeq LAE EA LApeak (max) LASmax	86.4 dB 48.240 µPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34	75.3 dB	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration)	86.4 dB 48.240 µPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14	75.3 dB	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration)	86.4 dB 48.240 µPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB	75.3 dB 42.6 dB 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration)	86.4 dB 48.240 µPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration)	86.4 dB 48.240 µPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration)	86.4 dB 48.240 µPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration)	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 Ldn LDay 07	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 0 Ldn LDay 07 56.8	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 0 Ldn LDay 07 56.8	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LCeq - LAeq LAieq	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 0 Ldn LDay 07 56.8 68.4 dB 56.8 dB 11.6 dB 59.9 dB	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LCeq - LAeq LAieq LAieq LAeq	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 Ldn LDay 07 56.8 68.4 dB 56.8 dB 11.6 dB 59.9 dB 56.8 dB	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAeq LAieq LAieq LAieq LAieq - LAeq LAieq - LAeq	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 Ldn LDay 07 56.8 68.4 dB 56.8 dB 11.6 dB 59.9 dB 56.8 dB 3.0 dB	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAeq LAieq - LAeq LAieq - LAeq # Overloads	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 Ldn LDay 07 56.8 68.4 dB 56.8 dB 11.6 dB 59.9 dB 56.8 dB 3.0 dB 0	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAeq LAieq LAieq LAieq LAieq - LAeq LAieq - LAeq	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 Ldn LDay 07 56.8 68.4 dB 56.8 dB 11.6 dB 59.9 dB 56.8 dB 3.0 dB	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAeq LAleq LAleq LAleq LAleq LAleq CAleq	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 Ldn LDay 07 56.8 68.4 dB 56.8 dB 11.6 dB 59.9 dB 56.8 dB 3.0 dB 0 0 0.0 s	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAleq LAleq LAleq LAleq LAleq LAleq - LAeq # Overloads Overload Duration # OBA Overloads OBA Overload Duration	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 Ldn LDay 07 56.8 68.4 dB 56.8 dB 11.6 dB 59.9 dB 56.8 dB 3.0 dB 0 0.0 s	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAeq LAleq - LAeq LAleq - LAeq # Overloads Overload Duration # OBA Overloads OBA Overload Duration Statistics	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 Ldn LDay 07 56.8 68.4 dB 56.8 dB 11.6 dB 59.9 dB 56.8 dB 3.0 dB 0 0.0 s 0 0.0 s	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAleq LAleq LAleq LAleq LAleq LAleq - LAeq # Overloads Overload Duration # OBA Overloads OBA Overload Duration	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 Ldn LDay 07 56.8 68.4 dB 56.8 dB 11.6 dB 59.9 dB 56.8 dB 3.0 dB 0 0.0 s	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAeq LAleq - LAeq # Overloads Overloads Overload Duration # OBA Overloads OBA Overloads OBA Overloads OBA Overloads OBA Overload Duration Statistics LAS5.00 LAS10.00 LAS33.30	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 Ldn LDay 07 56.8 68.4 dB 56.8 dB 11.6 dB 59.9 dB 56.8 dB 3.0 dB 0 0 0.0 s 0 0.0 s	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAeq LAleq - LAeq # Overloads Overloads Overload Duration # OBA Overloads OBA Overload Duration Statistics LAS5.00 LAS10.00 LAS33.30 LAS50.00	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 Ldn LDay 07 56.8 68.4 dB 56.8 dB 11.6 dB 59.9 dB 56.8 dB 3.0 dB 0 0.0 s 0 0.0 s 62.6 dB 59.2 dB 50.4 dB 47.6 dB	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	
LAeq LAE EA LApeak (max) LASmax LASmin SEA LAS > 85.0 dB (Exceedence Counts / Duration) LAS > 115.0 dB (Exceedence Counts / Duration) LApeak > 135.0 dB (Exceedence Counts / Duration) LApeak > 137.0 dB (Exceedence Counts / Duration) LApeak > 140.0 dB (Exceedence Counts / Duration) Community Noise LCeq LAeq LAeq LAeq LAeq LAleq - LAeq # Overloads Overloads Overload Duration # OBA Overloads OBA Overloads OBA Overloads OBA Overloads OBA Overload Duration Statistics LAS5.00 LAS10.00 LAS33.30	86.4 dB 48.240 μPa²h 2016/10/06 12:29:50 2016/10/06 12:28:34 2016/10/06 12:35:14 -99.9 dB 0 0 0 0 Ldn LDay 07 56.8 68.4 dB 56.8 dB 11.6 dB 59.9 dB 56.8 dB 3.0 dB 0 0 0.0 s 0 0.0 s	75.3 dB 42.6 dB 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s	


ATTACHMENT 2 HVAC Example Specifications

Product Data

Split System Cooling

4TTR3018H1000N 4TTR3024H1000N 4TTR3030H1000N 4TTR3036H1000N 4TTR3042E1000N 4TTR3048E1000N 4TTR3060D1000N

Product Specifications

Model No. (a)	4TTR3018H1000N	4TTR3024H1000N	4TTR3030H1000N	4TTR3036H1000N
POWER CONNS. — V/PH/HZ (b)	208/230/1/60	208/230/1/60	208/230/1/60	208/230/1/60
MIN. BRCH. CIR. AMPACITY	12	17	16	18
BR. CIR. PROT. RTG. — MAX. (AMPS)	20	25	25	30
COMPRESSOR	CLIMATUFF®- SCROLL	CLIMATUFF®- SCROLL	CLIMATUFF®- SCROLL	CLIMATAUFF®- SCROLL
RL AMPS — LR AMPS	9 — 48	12.8 — 58.3	12.3 - 63	14.1—75
Outdoor Fan FL AMPS	0.64	0.64	0.9	0.7
Fan HP	1/8	1/8	1/8	1/8
Fan Dia (inches)	23.0	23.0	18.9	23.0
Coil	SPINE FIN™	SPINE FIN™	SPINE FIN™	SPINE FIN™
Refrigerant R-410A	5 LBS., 11 OZ	5 LBS., 9 OZ	4 LBS., 10 OZ	4 LBS., 13 OZ
LINE SIZE — IN. O.D. GAS (c)	3/4	3/4	3/4	3/4
LINE SIZE — IN. O.D. LIQ. (c)	3/8	3/8	3/8	3/8
Charge Spec. Subcooling	10°F	10°F	10°F	10°F
Dimensions H x W X D Crated (IN.)	34 x 30.1 x 33	34 x 30.1 x 33	30 x 27 x 30	34 x 30.1 x 33
Weight — Shipping (lbs.)	167	169	157	175
Weight — Net (lbs.)	140	142	137	147
Optional Accessories:				
Anti-short Cycle Timer	TAYASCT501A	TAYASCT501A	TAYASCT501A	TAYASCT501A
Evaporator Defrost Control	AY28X079	AY28X079	AY28X079	AY28X079
Rubber Isolator Kit	BAYISLT101	BAYISLT101	BAYISLT101	BAYISLT101
Extreme Condition Mount Kit	BAYECMT023	BAYECMT023	BAYECMT023	BAYECMT023
Start Kit	BAYKSKT263	BAYKSKT263	BAYKSKT263	BAYKSKT263
Crankcase Heater Kit	BAYCCHT302	BAYCCHT302	BAYCCHT302	BAYCCHT302
Seacoast Kit	BAYSEAC001	BAYSEAC001	BAYSEAC001	BAYSEAC001
Low Ambient Kit	BAYLOAM103	BAYLOAM103	BAYLOAM103	BAYLOAM103
Refrigerant Lineset (d)	TAYREFLN950	TAYREFLN950	TAYREFLN7*	TAYREFLN7*

⁽a) Certified in accordance with the Unitary Air-conditioner equipment certification program which is based on AHRI standard

22-1842-8D-EN

 ⁽a) Calculated in accordance with N.E.C. Only use HACR circuit breakers or fuses.
 (b) Calculated in accordance with N.E.C. Only use HACR circuit breakers or fuses.
 (c) Standard line lengths — 60', Standard lift — 60' Suction and Liquid line. For Greater lengths and lifts refer to refrigerant piping software Pub#32-3312-0* (* denotes latest revision)..
 (d) * = 15, 20, 25, 30, 40 and 50 foot lineset available.

Product Specifications

Model No. (a)	4TTR3042E1000N	4TTR3048E1000N	4TTR3060D1000N
POWER CONNS. — V/PH/HZ (b)	280/230/1/60	280/230/1/60	280/230/1/60
MIN. BRCH. CIR. AMPACITY	22	28	35
BR. CIR. PROT. RTG. — MAX. (AMPS)	35	45	60
COMPRESSOR	CLIMATUFF®- SCROLL	CLIMATUFF®- SCROLL	CLIMATUFF®- SCROLL
RL AMPS — LR AMPS	17.0 — 124	21.8 — 117	26.8 — 134
Outdoor Fan FL AMPS	0.7	0.93	0.93
Fan HP	1/8	1/5	1/5
Fan Dia (inches)	23	23	27.5
Coil	SPINE FIN™	SPINE FIN™	SPINE FIN™
Refrigerant R-410A	5 LBS., 8 OZ	6 LBS., 7 OZ	8 LBS., 0 OZ
LINE SIZE — IN. O.D. GAS ^(c)	7/8	7/8	7/8
LINE SIZE — IN. O.D. LIQ. (c)	3/8	3/8	3/8
Charge Spec. Subcooling	10°F	10°F	10°F
Dimensions H x W X D Crated (IN.)	34 x 30.1 x 33	42 x 30.1 x 33	42.4 x 35.1 x 38.7
Weight — Shipping (lbs.)	200	233	261
Weight — Net (lbs.)	172	197	226
Optional Accessories:		•	
Anti-short Cycle Timer	TAYASCT501A	TAYASCT501A	TAYASCT501A
Evaporator Defrost Control	AY28X079	AY28X079	AY28X079
Rubber Isolator Kit	BAYISLT101	BAYISLT101	BAYISLT101
Extreme Condition Mount Kit	BAYECMT004	BAYECMT004	BAYECMT004
Start Kit	BAYKSKT263	BAYKSKT263	BAYKSKT263
Crankcase Heater Kit	BAYCCHT301	BAYCCHT301	BAYCCHT301
Seacoast Kit	BAYSEAC001	BAYSEAC001	BAYSEAC001
Low Ambient Kit	BAYLOAM103	BAYLOAM103	BAYLOAM103
Refrigerant Lineset (d)	TAYREFLN7*	TAYREFLN3*	TAYREFLN3*

⁽a) Certified in accordance with the Unitary Air-conditioner equipment certification program which is based on AHRI standard 210/240.

Sound Power Level

MODEL	A-Weighted Sound Power Level [dB(A)]	Full Octave Sound Power(dB)							
		63 Hz*	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
4TTR3018H1	72	73.7	71.4	65.4	68	67.3	62.9	56	50.3
4TTR3024H1	74	47.9	60.5	64.1	71.2	71.2	69.0	58.2	51.5
4TTR3030H1	72	69.9	69.6	69.1	68.6	68.7	60.9	56.2	48.9
4TTR3036H1	68	74.7	65.0	65.2	66.4	63.6	58.7	56.3	52.8
4TTR3042E1	72	77.6	68.3	67.4	65.6	67.4	58.2	54.1	47.6
4TTR3048E1	74	72.5	72.3	69.2	67.5	72.3	60.2	55.2	54.2
4TTR3060D1	80	47.3	55.7	69	72.7	75.8	69.4	62.2	53.3

Note: Rated in accordance with AHRI Standard 270–2008

*For Reference Only

22-1842-8D-EN

⁽b) Calculated in accordance with N.E.C. Only use HACR circuit breakers or fuses.

⁽c) Standard line lengths – 60', Standard lift – 60' Suction and Liquid line. For Greater lengths and lifts refer to refrigerant piping software Pub#32–3312–0* (* denotes latest revision)..

(d) * = 15, 20, 25, 30, 40 and 50 foot lineset available.

Accessory Description and Usage

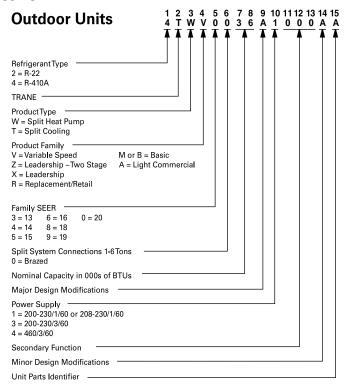
Anti-Short Cycle Timer — Solid state timing device that prevents compressor recycling until five (5) minutes have elapsed after satisfying call or power interruptions. Use in area with questionable power delivery, commercial applications, long lineset, etc.

Evaporation Defrost Control — SPST Temperature actuated switch that cycles the condenser off as indoor coil reaches freeze-up conditions. Used for low ambient cooling to 30°F with TXV.

Rubber Isolators — Five (5) large rubber donuts to isolate condensing unit from transmitting energy into mounting frame or pad. Use on any application where sound transmission needs to be minimized.

Hard Start Kit — Start capacitor and relay to assist compressor motor startup. Use in areas with marginal power supply, on long linesets, low ambient conditions, etc.

Extreme Condition Mount Kit — Bracket kits to securely mount condensing unit to a frame or pad without removing any panels. Use in areas with high winds, or on commercial roof tops, etc.

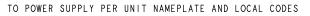

AHRI Standard Capacity Rating Conditions

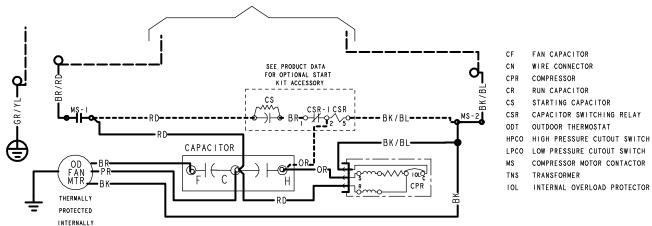
AHRI Standard 210/240 Rating Conditions

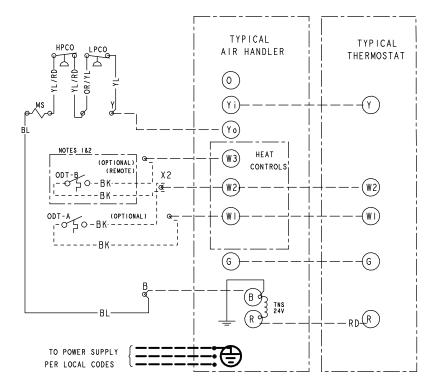
- 1. Cooling 80°F DB, 67°F WB air entering indoor coil, 95°F DB air entering outdoor coil.
- High Temperature Heating 47°F DB, 43°F WB air entering outdoor coil, 70°F DB air entering indoor coil
- 3. Low Temperature Heating 17°F DB air entering indoor coil.
- 4. Rated indoor airflow for heating is the same as for cooling.

AHRI Standard 270 Rating Conditions — (Noise rating numbers are determiend with the unit in cooling operations.) Standard Noise Rating number is at 95°F outdoor air.

Model Nomenclature

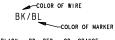



4 22-1842-8D-EN



Schematic Diagrams

Figure 1. 1.5 - 4.0 Ton Models


AND WARNING

HAZARDOUS VOLTAGE! DISCONNECT ALL ELECTRICAL POWER INCLUDING REMOTE DISCONNECTS BEFORE SERVICING.

ACAUTION

USE COPPER CONDUCTORS ONLY! UNIT TERMINALS ARE NOT DESIGNED TO ACCEPT OTHER TYPES OF CONDUCTORS. Failure to do so may cause damage to the equipment.

Failure to disconnect power before servicing can cause severe personal injury or death.

BK BLACK RD RED OR ORANGE BL BLUE WH WHITE GR GREEN BR BROWN YL YELLOW PR PURPLE PK PINK

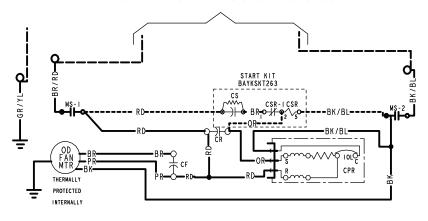
I. IF ODT-B IS NOT USED. ADD JUMPER BETWEEN W2 & W3 AT AIR HANDLER. IF USED, ODT-B MUST BE MOUNTED REMOTE OF CONTROL BOX IN AN APPROVED WEATHER PROOF ENCLOSURE.

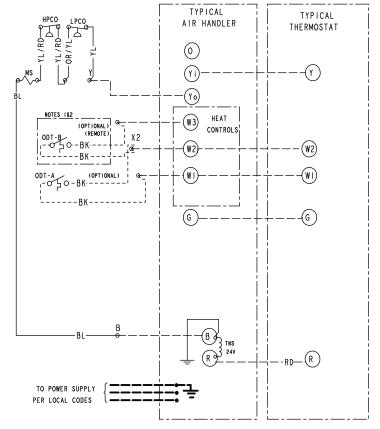
2. IF ODT-A IS NOT USED, ADD JUMPER BETWEEN WI & W2 AT AIR HANDLER.

3. LOW VOLTAGE {24 V} FIELD WIRING MUST BE 18 AWG MINIMUM.

4. USE COPPER CONDUCTORS ONLY!

FOR CANADIAN INSTALLATIONS POUR INSTALLATIONS CANADIENNES


CAUTION: NOT SUITABLE FOR USE ON SYSTEMS EXCEEDING 150V-TO-GROUND ATTENTION: NE CONVIENT PAS AUX INSTALLATIONS DE PLUS DE 150 V A LA TERRE


PRINTED FROM DI57047P03 REVA

22-1842-8D-EN

Figure 2. 5.0 Ton Models

TO POWER SUPPLY PER UNIT NAMEPLATE AND LOCAL CODES

PRINTED FROM D157048P01

- FAN CAPACITOR WIRECONNECTOR CPR COMPRESSOR RUN CAPACITOR CR STARTING CAPACITOR CSR CAPACITOR SWITCHING RELAY INDOOR FAN RELAY HPCO HIGH PRESSURE CUTOUT SWITCH LPCO LOW PRESSURE CUTOUT SWITCH IOL INTERNAL OVERLOAD PROTECTOR SYSTEM ON-OFF SWITCH COMPRESSOR MOTOR CONTACTOR ODA OUTDOOR ANTICIPATOR OUTDOOR FAN THERMOSTAT OUTDOOR TEMPERATURE SENSOR ODT OUTDOOR THERMOSTAT SWITCH OVER VALVE SOLENOID DISCHARGE LINE THERMOSTAT
 - BK/BL COLOR OF MARKER

TRANSFORMER

BK BLACK RD RED OR ORANGE
BL BLUE WH WHITE GR GREEN
BR BROWN YL YELLOW PR PURPLE
PK PINK

∆LWARNING

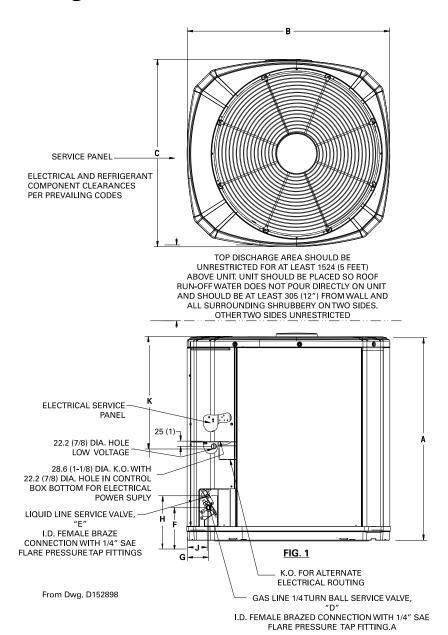
HAZARDOUS VOLTAGE!
DISCONNECT ALL ELECTRICAL POWER
INCLUDING REMOTE DISCONNECTS
BEFORE SERVICING.
Failure to disconnect power
before servicing can cause severe
personal injury or death.

∆CAUTION

USE COPPER CONDUCTORS ONLY!
UNIT TERMINALS ARE NOT DESIGNED
TO ACCEPT OTHER TYPES OF CONDUCTORS.
Failure to do so may cause damage
to the equipment.

NOTES:

I. IF ODT-B IS NOT USED. ADD JUMPER BETWEEN
W2 & W3 AT AIR HANDLER. IF USED, ODT-B
MUST BE MOUNTED REMOTE OF CONTROL BOX IN
AN APPROVED WEATHER PROOF ENCLOSURE.
2. IF ODT-A IS NOT USED. ADD JUMPER BETWEEN
W1 & W2 AT AIR HANDLER.
3. LOW YOUTAGE [24 V] FIELD WIRING MUST BE 18 AWG MIN.


FOR CANADIAN INSTALLATIONS POUR INSTALLATIONS CANADIENNES

CAUTION: NOT SUITABLE FOR USE ON SYSTEMS EXCEEDING 150V-TO-GROUND ATTENTION: NE CONVIENT PAS AUX INSTALLATIONS DE PLUS DE 150 V A LA TERRE

6 22-1842-8D-EN

Outline Drawing

Model	Base	Α	В	С	D	Е	F	G	Н	J	K
4TTR3018H	2	730 (28-3/4)	724 (28-1/2)	651 (25-5/8)	3/4	3/8	127 (5)	57 (2-1/4)	194 (7-5/8)	38 (1-1/2)	457 (18)
4TTR3024H	2	730 (28-3/4)	724 (28-1/2)	651 (25-5/8)	3/4	3/8	137 (5-3/8)	65 (2-5/8)	210 (8-1/4)	57 (2-1/4)	457 (18)
4TTR3030H	2	730 (28-3/4)	724 (28-1/2)	651 (25-5/8)	3/4	3/8	137 (5-3/8)	65 (2-5/8)	210 (8-1/4)	57 (2-1/4)	457 (18)
4TTR3036H	3	730 (28-3/4)	829 (32-5/8)	756 (29-3/4)	3/4	3/8	137 (5-3/8)	79 (3-1/8)	197 (7-3/4)	60 (2-3/8)	508 (20)
4TTR3042E	3	730 (28-3/4)	829 (32-5/8)	756 (29-3/4)	7/8	3/8	152 (6)	98 (3-7/8)	219 (8-5/8)	86 (3-3/8)	508 (20)
4TTR3048E	3	730 (28-3/4)	933 (36-3/4)	756 (29-3/4)	7/8	3/8	152 (6)	98 (3-7/8)	219 (8-5/8)	86 (3-3/8)	508 (20)
4TTR3060D	4	943 (37-1/8)	946 (37-1/4)	870 (34-1/4)	7/8	3/8	152 (6)	98 (3-7/8)	219 (8-5/8)	86 (3-3/8)	508 (20)

22-1842-8D-EN 7

Mechanical Specification Options

General

The Outdoor Units are fully charged from the factory for up to 15 feet of piping. This unit is designed to operate at outdoor ambient temperatures as high as 115°F. Cooling capacities are matched with a wide selection of air handlers and furnace coils that are AHRI certified. The unit is certified to UL 1995. Exterior is designed for outdoor application.

Casing

Unit casing is constructed of heavy gauge, galvanized steel and painted with a weather-resistant powder paint finish on all louvered panels and the fan top panel. The corner panels are prepainted. All panels are subjected to our 1,000 hour salt spray test. The base is made of a CMBP-G30 weatherproof material to resist corrosion.

Refrigerant Controls

Refrigeration system controls include condenser fan, compressor contactor and high pressure switch. High and low pressure controls are inherent to the compressor. A factory supplied liquid line drier is standard. Some models may require field installation.

Compressor

The compressor features internal over temperature, pressure protection and total dipped hermetic motor. Other features include: Centrifugal oil pump and low vibration and noise.

Condenser Coil

The outdoor coil provides low airflow resistance and efficient heat transfer. The coil is protected on all four sides by louvered panels.

Low Ambient Cooling

As manufactured, this system has a cooling capacity to 55°F. The addition of an evaporator defrost control permits operation to 40°F. The addition of an evaporator defrost control with TXV permits low ambient cooling to 30°F.

Thermostats—Cooling only and heat/cooling (manual and automatic change over). Sub-base to match thermostat and locking thermostat cover.

Evaporator Defrost Control — See Low Ambient Cooling.

Ingersoll Rand (NYSE:IR) advances the quality of life by creating comfortable, sustainable and efficient environments. Our people and our family of brands—including Club Car®, Ingersoll Rand®, Thermo King® and Trane®—work together to enhance the quality and comfort of air in homes and buildings; transport and protect food and perishables; and increase industrial productivity and efficiency. We are a global business committed to a world of sustainable progress and enduring results. For more information, visit www.ingersollrand.com.

RECON Noise Analysis

ATTACHMENT 3 SoundPLAN Data – Construction Noise

8458 Villa Serena SoundPLAN Data - Construction

		Level	Correction	ns	
Source name	Reference	Leq1	Kwall	CI	CT
		dB(A)	dB(A)	dB(A)	dB(A)
Construction Phase 1	Unit	114	-	-	-
Construction Phase 2	Unit	114	-	=	-

8458 Villa Serena SoundPLAN Data - Construction

				Limit	Level w/o NP	Level w. NI	Difference	Conflict
No.	Receiver name	Building	Floor	Leq1	Leq1	Leq1	Leq1	Leq1
		side		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1	1		1.Fl	-	67.9	0	-67.9	-
2	2.0		1.Fl	-	69.5	0	-69.5	-
3	3.0		1.Fl	-	71.8	0	-71.8	-
4	4.0		1.Fl	-	72.5	0	-72.5	-
5	5.0		1.Fl	-	72.7	0	-72.7	-
6	6.0		1.Fl	-	72.9	0	-72.9	-
7	7.0		1.Fl	-	73.0	0	-73.0	-
8	8.0		1.Fl	-	73.2	0	-73.2	-
9	9.0		1.Fl	-	72.4	0	-72.4	-
10	10.0		1.Fl	-	71.5	0	-71.5	-
11	11.0		1.Fl	-	73.3	0	-73.3	-
12	12.0		1.Fl	-	74.3	0	-74.3	-
13	13.0		1.Fl	-	75.6	0	-75.6	-
14	14.0		1.Fl	-	74.9	0	-74.9	-
15	15.0		1.Fl	-	70.5	0	-70.5	-
16	16.0		1.Fl	-	65.5	0	-65.5	-
17	17.0		1.Fl	-	69.0	0	-69.0	-
18	18.0		1.Fl	-	70.2	0	-70.2	-
19	19.0		1.Fl	-	69.8	0	-69.8	-
20	20.0		1.Fl	-	69.1	0	-69.1	-
21	21.0		1.Fl	-	69.5	0	-69.5	-
22	22.0		1.Fl	-	69.7	0	-69.7	-
23	23.0		1.Fl	-	69.6	0	-69.6	-
24	24.0		1.Fl	-	68.3	0	-68.3	-
25	25.0		1.Fl	-	63.9	0	-63.9	-

	Lev	vel w/o NP	Level w. NP
Source name		Leq1 dB(A)	Leq1 dB(A)
1 1.Fl 67.9	0.0		
Construction Phase 1 Construction Phase 2		$67.8 \\ 53.1$	0 0
2 1.Fl 69.5	0.0	99.1	U
Construction Phase 1		69.4	0
Construction Phase 2		53.7	0
3 1.Fl 71.8 Construction Phase 1	0.0	71.7	0
Construction Phase 2		54.4	0 0
4 1.Fl 72.5	0.0	0 -1	-
Construction Phase 1		72.4	0
Construction Phase 2 5 1.Fl 72.7	0.0	55.4	0
5 1.Fl 72.7 Construction Phase 1	0.0	72.6	0
Construction Phase 2		56.5	0
6 1.Fl 72.9	0.0		
Construction Phase 1		72.8	0
Construction Phase 2 7 1.Fl 73.0	0.0	57.7	0
Construction Phase 1	0.0	72.9	0
Construction Phase 2		59.3	0
8 1.Fl 73.2	0.0	5 0.0	0
Construction Phase 1 Construction Phase 2		$72.9 \\ 61.3$	0 0
9 1.Fl 72.4	0.0	01.5	O
Construction Phase 1		71.7	0
Construction Phase 2		64.2	0
10 1.Fl 71.5 Construction Phase 1	0.0	66.2	0
Construction Phase 2		70.0	0
11 1.Fl 73.3	0.0	10.0	o .
Construction Phase 1		62.5	0
Construction Phase 2	0.0	72.9	0
12 1.Fl 74.3 Construction Phase 1	0.0	59.1	0
Construction Phase 2		74.2	0
13 1.Fl 75.6	0.0		
Construction Phase 1		56.2	0
Construction Phase 2 14 1.Fl 74.9	0.0	75.5	0
Construction Phase 1	0.0	54.4	0
Construction Phase 2		74.9	0
15 1.Fl 70.5	0.0	~ 4 0	0
Construction Phase 1 Construction Phase 2		$54.0 \\ 70.4$	0 0
16 1.Fl 65.5	0.0	10.4	O
Construction Phase 1		53.7	0
Construction Phase 2		65.2	0
17 1.Fl 69.0 Construction Phase 1	0.0	55.7	0
Construction Phase 2		68.8	0
18 1.Fl 70.2	0.0		
Construction Phase 1		58.3	0
Construction Phase 2 19 1.Fl 69.8	0.0	70.0	0
Construction Phase 1	0.0	61.7	0
Construction Phase 2		69.0	0
20 1.Fl 69.1	0.0		
Construction Phase 1		67.7	0
Construction Phase 2 21 1.Fl 69.5	0.0	63.4	0
Construction Phase 1	0.0	69.1	0
Construction Phase 2		59.1	0
22 1.Fl 69.7	0.0	ao 4	0
Construction Phase 1 Construction Phase 2		$69.4 \\ 57.5$	0 0
23 1.Fl 69.6	0.0	01.0	O
Construction Phase 1		69.4	0
Construction Phase 2	6.6	56.3	0
24 1.Fl 68.3 Construction Phase 1	0.0	68.2	0
Construction Phase 2		54.4	0
25 1.Fl 63.9	0.0		
Construction Phase 1		63.5	0
Construction Phase 2		53.0	0

RECON Noise Analysis

ATTACHMENT 4 SoundPLAN Data – Traffic Noise

		Traffic values				Control	Constr.	Affect.		Gradient	
Stationing	ADT	Vehicles type	Vehicle name	day	Speed	device	Speed	veh.	Road surface	Min / Max	
km	Veh/24h			Veh/h	km/h		km/h	%		%	
Liberty Dr	rive Tr	affic direction: In	entry direction								
0+000	3648	Total	-	152	-	none	-	-	Average (of DGAC and PCC)	2.1 / 9.0	
0+000	3648	Automobiles	-	142	40	none	-	-	Average (of DGAC and PCC)	2.1 / 9.0	
0+000	3648	Medium trucks	-	5	40	none	-	-	Average (of DGAC and PCC)	2.1 / 9.0	
0+000	3648	Heavy trucks	-	2	40	none	-	-	Average (of DGAC and PCC)	2.1 / 9.0	
0+000	3648	Buses	-	2	40	none	-	-	Average (of DGAC and PCC)	2.1 / 9.0	
0+000	3648	Motorcycles	-	1	40	none	-	-	Average (of DGAC and PCC)	2.1 / 9.0	
0+000	3648	Auxiliary Vehicle	-	-	-	none	-	-	Average (of DGAC and PCC)	2.1 / 9.0	
0+310	-					-	-	-	-	-	
Marcos Street Traffic direction: In entry direction											
0+000	12240	Total	-	510	-	none	-	-	Average (of DGAC and PCC)	1.3 / 4.8	
0+000	12240	Automobiles	-	482	40	none	-	-	Average (of DGAC and PCC)	1.3 / 4.8	
0+000	12240	Medium trucks	-	15	40	none	-	-	Average (of DGAC and PCC)	1.3 / 4.8	
0+000	12240	Heavy trucks	-	5	40	none	-	-	Average (of DGAC and PCC)	1.3 / 4.8	
0+000	12240	Buses	-	5	40	none	-	-	Average (of DGAC and PCC)	1.3 / 4.8	
0+000	12240	Motorcycles	-	3	40	none	-	-	Average (of DGAC and PCC)	1.3 / 4.8	
0+000	12240	Auxiliary Vehicle	-	-	-	none	-	-	Average (of DGAC and PCC)	1.3 / 4.8	
0+293	-					-	-	-	-	-	
Mission Re	oad WB	Traffic direction:	In entry direc	tion							
0+000	38400	Total	-	1600	-	none	-	-	Average (of DGAC and PCC)	-0.739130435	
0+000	38400	Automobiles	-	1512	72	none	-	-	Average (of DGAC and PCC)	-0.739130435	
0+000	38400	Medium trucks	-	48	72	none	-	-	Average (of DGAC and PCC)	-0.739130435	
0+000	38400	Heavy trucks	-	16	72	none	-	-	Average (of DGAC and PCC)	-0.739130435	
0+000	38400	Buses	-	16	72	none	-	-	Average (of DGAC and PCC)	-0.739130435	
0+000	38400	Motorcycles	-	8	72	none	-	-	Average (of DGAC and PCC)	-0.739130435	
0+000	38400	Auxiliary Vehicle	-	-	-	none	-	-	Average (of DGAC and PCC)	-0.739130435	
0+803	-					-	-	-	-	-	
Mission Re	oad EB	Traffic direction:	In entry direct	ion							
0+000	38400	Total	-	1600	-	none	-	-	Average (of DGAC and PCC)	-2.857142857	
0+000	38400	Automobiles	-	1512	72	none	-	-	Average (of DGAC and PCC)	-2.857142857	
0+000	38400	Medium trucks	-	48	72	none	-	-	Average (of DGAC and PCC)	-2.857142857	
0+000	38400	Heavy trucks	-	16	72	none	-	-	Average (of DGAC and PCC)	-2.857142857	
0+000	38400	Buses	-	16	72	none	-	-	Average (of DGAC and PCC)	-2.857142857	
0+000	38400	Motorcycles	-	8	72	none	-	-	Average (of DGAC and PCC)	-2.857142857	
0+000	38400	Auxiliary Vehicle	-	-	-	none	-	-	Average (of DGAC and PCC)	-2.857142857	
0+800	-					-	-	-	-	-	
Richmar A	venue	Traffic direction:	In entry direct	ion							
0+000	15336	Total	-	639	-	none	-	-	Average (of DGAC and PCC)	-1.571428571	
0+000	15336	Automobiles	-	605	56	none	-	-	Average (of DGAC and PCC)	-1.571428571	
0+000	15336	Medium trucks	-	19	56	none	-	-	Average (of DGAC and PCC)	-1.571428571	
0+000	15336	Heavy trucks	-	6	56	none	-	-	Average (of DGAC and PCC)	-1.571428571	
0+000	15336	Buses	-	6	56	none	-	-	Average (of DGAC and PCC)	-1.571428571	
0+000	15336	Motorcycles	-	3	56	none	-	-	Average (of DGAC and PCC)	-1.571428571	
0+000	15336	Auxiliary Vehicle	-	-	-	none	-	-	Average (of DGAC and PCC)	-1.571428571	
0+819	-					-	-	-	-	-	

No.	Receiver name	Building Floor side	Limit L(Aeq1h) dB(A)	Level w/o NP L(Aeq1h) dB(A)	Level w. NP L(Aeq1h) dB(A)	Difference L(Aeq1h) dB(A)	Conflict L(Aeq1h) dB(A)
1	1	1.Fl	- ()	43.6	0	-43.6	-
1	1	2.Fl	_	44.7	0	-44.7	_
1	1	3.Fl	_	46.0	0	-46.0	_
2	2	1.Fl		44.4	0	-44.4	
2	2	2.Fl		45.5	0	-45.5	
2	2	3.Fl	_	46.7	0	-46.7	
3	3	1.Fl	_	47.8	0	-47.8	
3	3	2.Fl	_	49.2	0	-49.2	_
3	3	3.Fl		50.5	0	-50.5	
4	4	1.Fl	_	47.8	0	-47.8	_
4	4	2.Fl	_	49.1	0	-49.1	_
4	4	3.Fl	_	50.7	0	-50.7	_
5	5	1.Fl	_	49.9	0	-49.9	_
5	5	2.Fl	_	51.6	0	-51.6	-
5	5	3.Fl	_	52.7	0	-52.7	
6	6	1.Fl	-	42.6	0	-42.6	-
6	6	2.Fl	_	43.9	0	-43.9	
6	6	3.Fl	_	45.5	0	-45.5	_
7	7	1.Fl	_	56.3	0	-56.3	-
7	7	2.Fl	_	58.5	0	-58.5	
7	7	3.Fl	_	59.2	0	-59.2	-
8	8	1.Fl	_	61.5	0	-61.5	-
8	8	2.Fl	_	63.1	0	-63.1	-
8	8	3.Fl	_	63.6	0	-63.6	-
9	9	1.Fl	-	61.5	0	-61.5	-
9	9	2.Fl	-	63.1	0	-63.1	-
9	9	3.Fl	-	63.6	0	-63.6	-
10	10	1.Fl	-	61.6	0	-61.6	-
10	10	2.Fl	-	63.2	0	-63.2	-
10	10	3.Fl	-	63.7	0	-63.7	-
11	11	1.Fl	-	61.8	0	-61.8	-
11	11	2.Fl	-	63.4	0	-63.4	-
11	11	3.Fl	-	63.8	0	-63.8	-
12	12	1.Fl	-	62.4	0	-62.4	-
12	12	2.Fl	-	63.9	0	-63.9	-
12	12	3.Fl	-	64.0	0	-64.0	-
13	13	1.Fl	-	59.8	0	-59.8	-
13	13	2.Fl	-	61.3	0	-61.3	-
13	13	3.Fl	-	61.6	0	-61.6	-
14	14	1.Fl	-	62.6	0	-62.6	-
14	14	2.Fl	-	63.8	0	-63.8	-
14	14	3.Fl	-	63.9	0	-63.9	-
15	15	1.Fl	-	62.9	0	-62.9	-
15	15	2.Fl	-	63.9	0	-63.9	-
15	15	3.Fl	-	64.1	0	-64.1	-
16	16	1.Fl	-	63.0	0	-63.0	-
16	16	2.Fl	-	63.9	0	-63.9	-
16	16	3.Fl	-	64.2	0	-64.2	-
17	17	1.Fl	-	63.1	0	-63.1	-
17	17	2.Fl	-	64.1	0	-64.1	-
17	17	3.Fl	-	64.3	0	-64.3	-
18	18	1.Fl	-	63.3	0	-63.3	-
18	18	2.Fl	-	64.2	0	-64.2	-
18	18	3.Fl	-	64.4	0	-64.4	-
19	19	1.Fl	-	60.8	0	-60.8	-

19	19	2.Fl	-	62.2	0	-62.2	-
19	19	3.Fl	-	62.4	0	-62.4	-
20	20	1.Fl	-	60.9	0	-60.9	-
20	20	2.Fl	-	62.1	0	-62.1	-
20	20	3.Fl	-	62.1	0	-62.1	-
21	21	1.Fl	-	61.5	0	-61.5	-
21	21	2.Fl	-	62.9	0	-62.9	-
21	21	3.Fl	-	63.0	0	-63.0	-
22	22	1.Fl	-	63.8	0	-63.8	-
22	22	2.Fl	-	65.0	0	-65.0	-
22	22	3.Fl	-	65.0	0	-65.0	-
23	23	1.Fl	-	63.3	0	-63.3	_
23	23	2.Fl	-	64.6	0	-64.6	_
23	23	3.Fl	_	64.6	0	-64.6	_
24	24	1.Fl	_	63.2	0	-63.2	_
24	24	2.Fl	_	64.5	0	-64.5	_
$\overline{24}$	$\frac{1}{24}$	3.Fl	_	64.5	0	-64.5	_
25	25	1.Fl	_	62.9	0	-62.9	_
25	25	2.Fl	_	64.3	0	-64.3	_
25	25 25	3.Fl	_	64.3	0	-64.3	_
26	26	1.Fl	_	62.7	0	-62.7	_
26	26	2.Fl	_	64.1	0	-64.1	_
26	26	3.Fl	_	64.1	0	-64.1	
$\frac{20}{27}$	27	1.Fl	-	62.6	0	-62.6	_
27	27	2.Fl	-	64.0	0	-64.0	_
27	27	3.Fl	-	64.1	0	-64.1	-
28	28	1.Fl	-	59.7	0	-59.7	-
28	28	2.Fl	-	61.2	0	-61.2	-
28	28	3.Fl	-	61.5	0	-61.5	-
29	29	1.Fl	-	62.6	0	-62.6	-
29	29	2.Fl	-	64.0	0	-62.0 -64.0	-
29	29	3.Fl	-	64.1	0	-64.0 -64.1	-
30	30	1.Fl	-	62.5	0	-64.1 -62.5	-
30	30	2.Fl	-	63.9	0	-62.5 -63.9	-
30	30 30	3.Fl	-		0		-
			-	64.0		-64.0	-
31	31	1.Fl	-	62.4	0	-62.4	-
31	31	2.Fl	-	63.8	0	-63.8	-
31	31	3.Fl	-	63.9	0	-63.9	-
32	32	1.Fl	-	62.4	0	-62.4	-
32	32	2.Fl	-	63.8	0	-63.8	-
32	32	3.Fl	-	63.9	0	-63.9	-
33	33	1.Fl	-	62.4	0	-62.4	-
33	33	2.Fl	-	63.8	0	-63.8	-
33	33	3.Fl	-	63.9	0	-63.9	-
34	34	1.Fl	-	62.6	0	-62.6	-
34	34	2.Fl	-	64.0	0	-64.0	-
34	34	3.Fl	-	64.2	0	-64.2	-
35	35	1.Fl	-	59.0	0	-59.0	-
35	35	2.Fl	-	60.8	0	-60.8	-
35	35	3.Fl	-	61.1	0	-61.1	-
36	36	1.Fl	-	57.5	0	-57.5	-
36	36	2.Fl	-	58.7	0	-58.7	-
36	36	3.Fl	-	59.2	0	-59.2	-
37	37	1.Fl	-	57.0	0	-57.0	-
37	37	2.Fl	-	58.2	0	-58.2	-
37	37	3.Fl	-	58.7	0	-58.7	-

Source name	Lar	ne	Level w/o NP L(Aeq1h) dB(A)	Level w. NP L(Aeq1h) dB(A)
1 1.Fl	43.6	0.0	` '	· /
Liberty Drive			38.1	0
Marcos Street			40.9	0
Mission Road EH	3		30.9	0
Mission Road W			30.9	0
Richmar Avenue			31.7	0
1 2.Fl	44.7	0.0	01	O .
Liberty Drive	11.,	0.0	39.7	0
Marcos Street			42.0	0
Mission Road EH	3		32.4	0
Mission Road W			32.0	0
Richmar Avenue			29.3	0
1 3.Fl	46.0	0.0	20.0	O .
Liberty Drive	10.0	0.0	40.5	0
Marcos Street			43.0	0
Mission Road EH	3		35.3	0
Mission Road W			35.0	0
Richmar Avenue			33.1	0
2 1.Fl	44.4	0.0	55.1	Ü
Liberty Drive	77,7	0.0	38.1	0
Marcos Street			40.8	0
Mission Road EF	₹		31.6	0
Mission Road W			31.2	0
Richmar Avenue			38.0	0
2 2.Fl	45.5	0.0	50.0	O
Liberty Drive	10.0	0.0	39.4	0
Marcos Street			41.8	0
Mission Road EH	3		33.9	0
Mission Road W			33.1	0
Richmar Avenue			38.6	0
2 3.Fl	46.7	0.0	00.0	O .
Liberty Drive	10	0.0	40.1	0
Marcos Street			42.8	0
Mission Road EH	}		35.8	0
Mission Road W			35.2	0
Richmar Avenue			40.1	0
3 1.Fl	47.8	0.0		-
Liberty Drive			36.0	0
Marcos Street			47.2	0
Mission Road EH	3		30.1	0
Mission Road W			30.2	0
Richmar Avenue			31.1	0
3 2.Fl	49.2	0.0		~
Liberty Drive			36.8	0
Marcos Street			48.8	0
Mission Road EH	3		32.1	0
Mission Road W			31.9	0
Richmar Avenue			27.9	0
3 3.Fl	50.5	0.0		-
		٥.٠		

Liberty Drive		37.5	0
Marcos Street		49.9	0
Mission Road EB		34.9	0
Mission Road WB		35.1	0
Richmar Avenue		32.2	0
4 1.Fl 47.8	0.0		
Liberty Drive		31.4	0
Marcos Street		47.2	0
Mission Road EB		33.4	0
Mission Road WB		33.4	0
Richmar Avenue		33.3	0
4 2.Fl 49.1	0.0	33.3	Ü
Liberty Drive	0.0	32.2	0
Marcos Street		48.7	0
Mission Road EB		33.6	0
Mission Road WB		33.2	0
Richmar Avenue		33.7	0
4 3.Fl 50.7	0.0	55.7	U
Liberty Drive	0.0	33.1	0
Marcos Street		49.9	0
Mission Road EB		38.9	0
Mission Road WB			
		38.5	0
Richmar Avenue	0.0	35.5	0
5 1.Fl 49.9	0.0	00.4	0
Liberty Drive Marcos Street		29.4 44.2	0
Mission Road EB Mission Road WB		37.8	0
		37.7	0
Richmar Avenue 5 2.Fl 51.6	0.0	47.7	0
	0.0	20.7	0
Liberty Drive		30.7	0
Marcos Street		45.2	0
Mission Road EB		40.1	0
Mission Road WB		39.7	0
Richmar Avenue	0.0	49.6	0
5 3.Fl 52.7	0.0	01.0	0
Liberty Drive		31.8	0
Marcos Street		46.5	0
Mission Road EB		42.3	0
Mission Road WB		42.0	0
Richmar Avenue		50.4	0
6 1.Fl 42.6	0.0		
Liberty Drive		28.2	0
Marcos Street		41.5	0
Mission Road EB		30.5	0
Mission Road WB		30.8	0
Richmar Avenue		29.9	0
6 2.Fl 43.9	0.0		
Liberty Drive		30.3	0
Marcos Street		42.7	0
Mission Road EB		33.3	0
Mission Road WB		33.3	0

Richmar Avenue	28.9	0
6 3.Fl 45.5	0.0	
Liberty Drive	31.3	0
Marcos Street	44.1	0
Mission Road EB	35.1	0
Mission Road WB	35.3	0
Richmar Avenue	32.5	0
	0.0	
Liberty Drive	5.0	0
Marcos Street	17.3	0
Mission Road EB	47.0	0
Mission Road WB	47.0	0
Richmar Avenue	55.1	0
7 2.Fl 58.5	0.0	
Liberty Drive	11.9	0
Marcos Street	23.1	0
Mission Road EB	49.8	0
Mission Road WB	49.5	0
Richmar Avenue	57.2	0
7 3.Fl 59.2	0.0	
Liberty Drive	11.7	0
Marcos Street	21.8	0
Mission Road EB	51.4	0
Mission Road WB	51.3	0
Richmar Avenue	57.4	0
	0.0	
Liberty Drive	17.6	0
Marcos Street	33.6	0
Mission Road EB	48.3	0
Mission Road WB	48.6	0
Richmar Avenue	61.0	0
	0.0	
Liberty Drive	19.4	0
Marcos Street	35.2	0
Mission Road EB	50.4	0
Mission Road WB	50.7	0
Richmar Avenue	62.6	0
	0.0	Ü
Liberty Drive	19.9	0
Marcos Street	36.2	0
Mission Road EB	52.7	0
Mission Road WB	52.9	0
Richmar Avenue	62.8	0
	0.0	O
Liberty Drive	17.8	0
Marcos Street	34.1	0
Mission Road EB	47.3	0
Mission Road WB	47.6	0
Richmar Avenue	61.1	0
	0.0	J
Liberty Drive	19.6	0
Marcos Street	35.7	0
marcus street	əə. <i>t</i>	U

Mission Road EB			49.3	0
Mission Road WB			49.6	0
Richmar Avenue			62.7	0
9 3.Fl	63.6	0.0		
Liberty Drive			20.0	0
Marcos Street			36.6	0
Mission Road EB			52.2	0
Mission Road WB			52.4	0
Richmar Avenue			62.9	0
10 1.Fl	61.6	0.0		
Liberty Drive			18.3	0
Marcos Street			34.9	0
Mission Road EB			46.6	0
Mission Road WB			46.9	0
Richmar Avenue			61.3	0
10 2.Fl	63.2	0.0	01.0	Ü
Liberty Drive	00.2	0.0	20.2	0
Marcos Street			36.6	0
Mission Road EB			48.7	0
Mission Road WB			48.9	0
Richmar Avenue			62.9	0
10 3.Fl	63.7	0.0	02.9	U
	05.7	0.0	20.0	Λ
Liberty Drive Marcos Street			20.8	0
			37.5	
Mission Road EB			51.8	0
Mission Road WB			51.9	0
Richmar Avenue	01.0	0.0	63.0	0
11 1.Fl	61.8	0.0	10.0	0
Liberty Drive			18.6	0
Marcos Street			35.5	0
Mission Road EB			46.6	0
Mission Road WB			46.8	0
Richmar Avenue			61.6	0
11 2.Fl	63.4	0.0		
Liberty Drive			20.5	0
Marcos Street			37.2	0
Mission Road EB			48.7	0
Mission Road WB			48.8	0
Richmar Avenue			63.1	0
3.Fl	63.8	0.0		
Liberty Drive			21.0	0
Marcos Street			38.2	0
Mission Road EB			51.8	0
Mission Road WB			51.8	0
Richmar Avenue			63.1	0
12 1.Fl	62.4	0.0		
Liberty Drive			23.2	0
Marcos Street			36.8	0
Mission Road EB			47.2	0
Mission Road WB			47.5	0
Richmar Avenue			62.1	0
12 2.Fl	63.9	0.0		

Liberty Drive			25.6	0
Marcos Street			38.5	0
Mission Road EB			49.4	0
Mission Road WB			49.6	0
Richmar Avenue			63.5	0
12 3.Fl	64.0	0.0		
Liberty Drive			26.5	0
Marcos Street			39.8	0
Mission Road EB			52.1	0
Mission Road WB			52.0	0
Richmar Avenue			63.4	0
13 1.Fl	59.8	0.0		
Liberty Drive			19.8	0
Marcos Street			39.1	0
Mission Road EB			44.1	0
Mission Road WB			44.0	0
Richmar Avenue			59.5	0
13 2.Fl	61.3	0.0		
Liberty Drive			21.1	0
Marcos Street			40.6	0
Mission Road EB			46.2	0
Mission Road WB			45.8	0
Richmar Avenue			61.0	0
13 3.Fl	61.6	0.0	01.0	Ü
Liberty Drive	01.0	0.0	21.6	0
Marcos Street			41.9	0
Mission Road EB			49.3	0
Mission Road WB			48.9	0
Richmar Avenue			61.0	0
14 1.Fl	62.6	0.0	01.0	Ü
Liberty Drive	02.0	0.0	26.5	0
Marcos Street			42.7	0
Mission Road EB			43.9	0
Mission Road WB			43.6	0
Richmar Avenue			62.5	0
14 2.Fl	63.8	0.0	02.0	Ü
Liberty Drive	00.0	0.0	29.0	0
Marcos Street			44.4	0
Mission Road EB			45.8	0
Mission Road WB			45.1	0
Richmar Avenue			63.6	0
14 3.Fl	63.9	0.0	05.0	U
Liberty Drive	00.0	0.0	29.7	0
Marcos Street			45.5	0
Mission Road EB			50.1	0
Mission Road WB				0
			49.5	
Richmar Avenue	CO 0	0.0	63.5	0
15 1.Fl	62.9	0.0	26.0	0
Liberty Drive			26.9	0
Marcos Street			45.1	0
Mission Road EB			43.6	0
Mission Road WB			43.3	0

Richmar Avenue			62.7	0
15 2.Fl	63.9	0.0		
Liberty Drive			29.4	0
Marcos Street			46.8	0
Mission Road EB			45.7	0
Mission Road WB			45.0	0
Richmar Avenue			63.7	0
15 3.Fl	64.1	0.0		
Liberty Drive			29.9	0
Marcos Street			47.6	0
Mission Road EB			49.8	0
Mission Road WB			49.1	0
Richmar Avenue			63.7	0
16 1.Fl	63.0	0.0		
Liberty Drive			27.3	0
Marcos Street			47.5	0
Mission Road EB			43.8	0
Mission Road WB			43.5	0
Richmar Avenue			62.8	0
16 2.Fl	63.9	0.0		
Liberty Drive			29.6	0
Marcos Street			49.0	0
Mission Road EB			45.8	0
Mission Road WB			45.2	0
Richmar Avenue			63.6	0
16 3.Fl	64.2	0.0		
Liberty Drive			30.1	0
Marcos Street			49.6	0
Mission Road EB			49.8	0
Mission Road WB			49.1	0
Richmar Avenue			63.7	0
17 1.Fl	63.1	0.0		
Liberty Drive			27.2	0
Marcos Street			49.8	0
Mission Road EB			44.0	0
Mission Road WB			43.7	0
Richmar Avenue			62.8	0
17 2.Fl	64.1	0.0		
Liberty Drive			29.5	0
Marcos Street			51.3	0
Mission Road EB			46.1	0
Mission Road WB			45.6	0
Richmar Avenue			63.7	0
$17 \qquad 3.Fl$	64.3	0.0		
Liberty Drive			30.2	0
Marcos Street			51.5	0
Mission Road EB			49.9	0
Mission Road WB			49.3	0
Richmar Avenue			63.8	0
18 1.Fl	63.3	0.0		
Liberty Drive			27.0	0
Marcos Street			51.7	0

Mission Road EB			44.1	0
Mission Road WB			43.8	0
Richmar Avenue			62.8	0
18 2.Fl	64.2	0.0		
Liberty Drive			29.2	0
Marcos Street			53.3	0
Mission Road EB			46.0	0
Mission Road WB			45.6	0
Richmar Avenue			63.7	0
18 3.Fl	64.4	0.0		
Liberty Drive			29.8	0
Marcos Street			53.3	0
Mission Road EB			50.1	0
Mission Road WB			49.6	0
Richmar Avenue			63.7	0
19 1.Fl	60.8	0.0		
Liberty Drive			26.7	0
Marcos Street			58.5	0
Mission Road EB			45.7	0
Mission Road WB			45.9	0
Richmar Avenue			56.2	0
19 2.Fl	62.2	0.0		
Liberty Drive			27.3	0
Marcos Street			59.4	0
Mission Road EB			47.9	0
Mission Road WB			48.0	0
Richmar Avenue			58.1	0
19 3.Fl	62.4	0.0		
Liberty Drive			28.8	0
Marcos Street			59.4	0
Mission Road EB			49.8	0
Mission Road WB			49.6	0
Richmar Avenue			58.3	0
20 1.Fl	60.9	0.0		
Liberty Drive			13.7	0
Marcos Street			60.0	0
Mission Road EB			45.5	0
Mission Road WB			45.6	0
Richmar Avenue			52.6	0
20 2.Fl	62.1	0.0		
Liberty Drive			17.7	0
Marcos Street			60.9	0
Mission Road EB			47.8	0
Mission Road WB			47.9	0
Richmar Avenue			54.6	0
20 3.Fl	62.1	0.0		
Liberty Drive			19.9	0
Marcos Street			60.6	0
Mission Road EB			49.0	0
Mission Road WB			49.2	0
Richmar Avenue			55.3	0
21 1.Fl	61.5	0.0		

Liberty Drive			16.1	0
Marcos Street			59.8	0
Mission Road EB			45.9	0
Mission Road WB			46.0	0
Richmar Avenue			56.0	0
21 2.Fl	62.9	0.0		
Liberty Drive			18.8	0
Marcos Street			60.7	0
Mission Road EB			48.2	0
Mission Road WB			48.4	0
Richmar Avenue			58.1	0
21 3.Fl	63.0	0.0		
Liberty Drive			20.6	0
Marcos Street			60.5	0
Mission Road EB			50.0	0
Mission Road WB			50.0	0
Richmar Avenue			58.3	0
22 1.Fl	63.8	0.0		
Liberty Drive			33.1	0
Marcos Street			53.1	0
Mission Road EB			45.5	0
Mission Road WB			45.5	0
Richmar Avenue			63.2	0
22 2.Fl	65.0	0.0	00.2	Ü
Liberty Drive	00.0	0.0	34.5	0
Marcos Street			54.4	0
Mission Road EB			47.9	0
Mission Road WB			47.8	0
Richmar Avenue			64.4	0
22 3.Fl	65.0	0.0	0 1.1	Ü
Liberty Drive	00.0	0.0	34.6	0
Marcos Street			54.3	0
Mission Road EB			50.5	0
Mission Road WB			50.3	0
Richmar Avenue			64.2	0
23 1.Fl	63.3	0.0	0 1. -	Ü
Liberty Drive	00.0	0.0	34.2	0
Marcos Street			49.2	0
Mission Road EB			45.4	0
Mission Road WB			45.3	0
Richmar Avenue			63.0	0
23 2.Fl	64.6	0.0	00.0	U
Liberty Drive	04.0	0.0	35.3	0
Marcos Street			50.8	0
Mission Road EB			47.7	0
Mission Road WB			47.5	0
Richmar Avenue			64.2	0
23 3.Fl	64.6	0.0	04.2	U
	04.0	0.0	25.8	0
Liberty Drive			35.8	
Marcos Street Mission Pood FR			51.0	0
Mission Road EB			50.1	0
Mission Road WB			49.7	0

Richmar Avenue			64.0	0
24 1.Fl	63.2	0.0		
Liberty Drive			34.9	0
Marcos Street			47.4	0
Mission Road EB			45.3	0
Mission Road WB			45.2	0
Richmar Avenue			62.9	0
24 2.Fl	64.5	0.0		
Liberty Drive			36.0	0
Marcos Street			49.1	0
Mission Road EB			47.5	0
Mission Road WB			47.2	0
Richmar Avenue			64.2	0
3.Fl	64.5	0.0		
Liberty Drive			36.4	0
Marcos Street			49.7	0
Mission Road EB			50.1	0
Mission Road WB			49.5	0
Richmar Avenue			64.0	0
25 1.Fl	62.9	0.0		
Liberty Drive			35.6	0
Marcos Street			45.2	0
Mission Road EB			44.8	0
$Mission \ Road \ WB$			44.7	0
Richmar Avenue			62.7	0
25 2.Fl	64.3	0.0		
Liberty Drive			36.6	0
Marcos Street			46.9	0
Mission Road EB			47.1	0
Mission Road WB			46.8	0
Richmar Avenue			64.0	0
25 3.Fl	64.3	0.0		
Liberty Drive			36.7	0
Marcos Street			47.7	0
Mission Road EB			49.8	0
$Mission \ Road \ WB$			49.3	0
Richmar Avenue			63.9	0
26 1.Fl	62.7	0.0		
Liberty Drive			36.3	0
Marcos Street			43.1	0
Mission Road EB			43.0	0
$Mission \ Road \ WB$			42.6	0
Richmar Avenue			62.6	0
26 2.Fl	64.1	0.0		
Liberty Drive			37.2	0
Marcos Street			44.8	0
Mission Road EB			45.3	0
Mission Road WB			44.6	0
Richmar Avenue			63.9	0
26 3.Fl	64.1	0.0		
Liberty Drive			37.5	0
Marcos Street			45.7	0

Mission Road EB			48.9	0
Mission Road WB			48.1	0
Richmar Avenue			63.8	0
27 1.Fl	62.6	0.0		
Liberty Drive			36.5	0
Marcos Street			41.9	0
Mission Road EB			43.8	0
Mission Road WB			43.6	0
Richmar Avenue			62.4	0
27 2.Fl	64.0	0.0		
Liberty Drive			37.4	0
Marcos Street			43.7	0
Mission Road EB			46.1	0
Mission Road WB			45.6	0
Richmar Avenue			63.8	0
27 3.Fl	64.1	0.0		
Liberty Drive			37.9	0
Marcos Street			44.7	0
Mission Road EB			49.4	0
Mission Road WB			48.6	0
Richmar Avenue			63.7	0
28 1.Fl	59.7	0.0		
Liberty Drive			36.7	0
Marcos Street			39.4	0
Mission Road EB			43.3	0
Mission Road WB			43.2	0
Richmar Avenue			59.4	0
28 2.Fl	61.2	0.0		
Liberty Drive			37.1	0
Marcos Street			41.0	0
Mission Road EB			45.5	0
Mission Road WB			45.0	0
Richmar Avenue			60.9	0
28 3.Fl	61.5	0.0		
Liberty Drive			37.9	0
Marcos Street			42.2	0
Mission Road EB			48.4	0
Mission Road WB			47.7	0
Richmar Avenue			61.0	0
29 1.Fl	62.6	0.0		
Liberty Drive			40.8	0
Marcos Street			37.8	0
Mission Road EB			43.7	0
Mission Road WB			43.6	0
Richmar Avenue			62.5	0
29 2.Fl	64.0	0.0		
Liberty Drive			41.2	0
Marcos Street			39.7	0
Mission Road EB			45.5	0
Mission Road WB			45.0	0
Richmar Avenue			63.8	0
29 3.Fl	64.1	0.0		

Liberty Drive			41.1	0
Marcos Street			40.6	0
Mission Road EB			49.3	0
Mission Road WB			48.6	0
Richmar Avenue			63.7	0
30 1.Fl	62.5	0.0		
Liberty Drive			41.9	0
Marcos Street			37.3	0
Mission Road EB			43.3	0
Mission Road WB			43.0	0
Richmar Avenue			62.4	0
30 2.Fl	63.9	0.0		
Liberty Drive			42.4	0
Marcos Street			39.2	0
Mission Road EB			45.0	0
Mission Road WB			44.4	0
Richmar Avenue			63.8	0
30 3.Fl	64.0	0.0	00.0	Ů
Liberty Drive	01.0	0.0	42.6	0
Marcos Street			40.2	0
Mission Road EB			49.0	0
Mission Road WB			48.1	0
Richmar Avenue			63.7	0
31 1.Fl	62.4	0.0	00.1	Ů
Liberty Drive	02.1	0.0	43.8	0
Marcos Street			36.7	0
Mission Road EB			43.3	0
Mission Road WB			43.0	0
Richmar Avenue			62.3	0
31 2.Fl	63.8	0.0		
Liberty Drive			44.0	0
Marcos Street			38.5	0
Mission Road EB			44.9	0
Mission Road WB			44.4	0
Richmar Avenue			63.6	0
31 3.Fl	63.9	0.0		
Liberty Drive			44.0	0
Marcos Street			39.4	0
Mission Road EB			49.0	0
Mission Road WB			48.1	0
Richmar Avenue			63.6	0
32 1.Fl	62.4	0.0		
Liberty Drive			45.3	0
Marcos Street			35.8	0
Mission Road EB			43.3	0
Mission Road WB			42.8	0
Richmar Avenue			62.2	0
32 2.Fl	63.8	0.0		
Liberty Drive			45.8	0
Marcos Street			37.7	0
Mission Road EB			44.6	0
Mission Road WB			44.2	0

Richmar Avenue			63.6	0
32 $3.Fl$	63.9	0.0		
Liberty Drive			45.7	0
Marcos Street			38.6	0
Mission Road EB			49.1	0
Mission Road WB			48.2	0
Richmar Avenue			63.6	0
33 1.Fl	62.4	0.0		
Liberty Drive			47.4	0
Marcos Street			34.7	0
Mission Road EB			43.5	0
Mission Road WB			43.3	0
Richmar Avenue			62.1	0
$33 \qquad 2.Fl$	63.8	0.0		
Liberty Drive			47.8	0
Marcos Street			36.6	0
Mission Road EB			45.3	0
Mission Road WB			44.8	0
Richmar Avenue			63.5	0
33 3.Fl	63.9	0.0		
Liberty Drive			47.6	0
Marcos Street			37.7	0
Mission Road EB			49.6	0
Mission Road WB			48.7	0
Richmar Avenue			63.5	0
34 1.Fl	62.6	0.0		
Liberty Drive			50.6	0
Marcos Street			33.6	0
Mission Road EB			48.2	0
Mission Road WB			47.5	0
Richmar Avenue			61.9	0
34 2.Fl	64.0	0.0		
Liberty Drive			50.9	0
Marcos Street			35.3	0
Mission Road EB			51.1	0
Mission Road WB			49.7	0
Richmar Avenue			63.4	0
34 3.Fl	64.2	0.0		
Liberty Drive			50.9	0
Marcos Street			36.4	0
Mission Road EB			52.6	0
Mission Road WB			51.5	0
Richmar Avenue			63.4	0
35 1.Fl	59.0	0.0		
Liberty Drive			54.0	0
Marcos Street			13.4	0
Mission Road EB			48.1	0
Mission Road WB			47.2	0
Richmar Avenue			56.3	0
35 2.Fl	60.8	0.0		_
Liberty Drive			54.2	0
Marcos Street			20.0	0

Mission Road EB			51.3	0
Mission Road WB			49.6	0
Richmar Avenue			58.5	0
35 $3.Fl$	61.1	0.0		
Liberty Drive			53.8	0
Marcos Street			23.0	0
Mission Road EB			52.4	0
Mission Road WB			51.0	0
Richmar Avenue			58.8	0
36 1.Fl	57.5	0.0		
Liberty Drive			55.3	0
Marcos Street			14.2	0
Mission Road EB			45.2	0
Mission Road WB			44.4	0
Richmar Avenue			52.1	0
36 2.Fl	58.7	0.0		
Liberty Drive			55.6	0
Marcos Street			20.3	0
Mission Road EB			48.6	0
Mission Road WB			47.0	0
Richmar Avenue			54.1	0
36 3.Fl	59.2	0.0	01.1	
Liberty Drive	00.2	0.0	55.3	0
Marcos Street			22.6	0
Mission Road EB			49.7	0
Mission Road WB			48.4	0
Richmar Avenue			55.2	0
37 1.Fl	57.0	0.0	00.2	O
Liberty Drive	01.0	0.0	55.0	0
Marcos Street			14.9	0
Mission Road EB			45.0	0
Mission Road WB			44.3	0
Richmar Avenue			51.1	0
37 2.Fl	58.2	0.0	01.1	U
Liberty Drive	50.2	0.0	55.4	0
Marcos Street			21.1	0
Mission Road EB			48.3	0
Mission Road WB			47.0	0
Richmar Avenue				0
	E0 7	0.0	53.0	U
	58.7	0.0	FF 0	0
Liberty Drive			55.2	0
Marcos Street			23.7	0
Mission Road EB			49.5	0
Mission Road WB			48.3	0
Richmar Avenue			54.1	0

RECON Noise Analysis

ATTACHMENT 5 SoundPLAN Data – On-site Generated Noise

Source nam	Reference	Level Leq1 dB(A)	Corrections Kwall dB(A)	CI dB(A)	CT dB(A)
1	Unit	72	- 1	-	- '
2	Unit	72	-	-	-
3	Unit	72	-	-	-
4	Unit	72	-	-	-
5	Unit	72	-	-	-
6	Unit	72	-	-	-
7	Unit	72	-	-	-
8	Unit	72	-	-	-
9	Unit	72	-	-	-
10	Unit	72	-	-	-
11	Unit	72 72	-	-	-
12	Unit	72	-	-	-
13 14	Unit Unit	$\frac{72}{72}$	-	-	-
15	Unit	72	-	-	-
16	Unit	72		-	-
17	Unit	72		_	_
18	Unit	72	-	_	
19	Unit	72	-	-	
20	Unit	72	-	-	-
21	Unit	72	-	-	-
22	Unit	72	-	-	-
23	Unit	72	-	-	-
24	Unit	72	-	-	-
25	Unit	72	-	-	-
26	Unit	72	-	-	-
27	Unit	72	-	-	-
28	Unit	72	-	-	-
29	Unit	72	-	-	-
30	Unit	72	-	-	-
31	Unit	72	-	-	-
32 33	Unit Unit	$\frac{72}{72}$	-	-	-
34	Unit	72		-	-
35	Unit	72	-	-	-
36	Unit	72	-	-	-
37	Unit	72		-	
38	Unit	72		-	-
39	Unit	72	-	_	_
40	Unit	72	-	-	-
41	Unit	72	-	-	-
42	Unit	72	-	-	-
43	Unit	72	-	-	-
44	Unit	72	-	-	-
45	Unit	72	-	-	-
46	Unit	72	-	-	-
47	Unit	72	-	-	-
48	Unit	72	-	-	-
49	Unit	72	-	-	-
50	Unit	72 72	-	-	-
51	Unit	72	-	-	-
52 53	Unit Unit	72 72	-	-	-
54	Unit	$\frac{72}{72}$	-	-	-
55	Unit	72	-		
56	Unit	72	-	-	-
57	Unit	72	-	_	_
58	Unit	72	-	_	_
59	Unit	72	-	-	-
60	Unit	72	-	-	-
61	Unit	72	-	-	-
62	Unit	72	-	-	-
63	Unit	72	-	-	-
64	Unit	72	-	-	-
65	Unit	72	-	-	-
66	Unit	72	-	-	-
67	Unit	72	-	-	-
68	Unit	72	-	-	-
69	Unit	72 72	-	-	-
70 71	Unit	72 72	-	-	-
71 72	Unit	72 72	-	-	-
$\frac{72}{72}$	Unit	72 72	-	-	-
$\frac{73}{74}$	Unit Unit	$\frac{72}{72}$		-	-
74 75	Unit	72 72	-	-	-
76	Unit	72	-		-

8458 Villa Serena SoundPLAN Data - HVAC

77	Unit	72	_	-	
78	Unit	72	_	_	_
79	Unit	72	-	-	_
			-	-	-
80	Unit	72	-	-	-
81	Unit	72	-	-	-
82	Unit	72	-	-	-
83	Unit	72	-	-	-
84	Unit	72	-	_	
85	Unit	72	_	_	_
86	Unit	72			
			-	-	-
87	Unit	72	-	-	-
88	Unit	72	-	-	-
89	Unit	72	-	-	-
90	Unit	72	-	-	
91	Unit	72	_	-	_
92	Unit	72			_
			-	-	
93	Unit	72	-	-	-
94	Unit	72	-	-	-
95	Unit	72	-	-	-
96	Unit	72	-	-	-
97	Unit	72	-	_	_
98	Unit	72	_	_	_
99	Unit	72			
			-	-	-
100	Unit	72	-	-	-
101	Unit	72	-	-	-
102	Unit	72	-	-	-
103	Unit	72	-	_	
104	Unit	72	_	_	_
105	Unit	72			
			-	-	-
106	Unit	72	-	-	-
107	Unit	72	-	-	-
108	Unit	72	-	-	-
109	Unit	72	-	-	_
110	Unit	72			_
111	Unit	72			_
				-	
112	Unit	72	-	-	-
113	Unit	72	-	-	-
114	Unit	72	-	-	-
115	Unit	72	-	-	-
116	Unit	72	-	-	_
117	Unit	72			
118	Unit	72			_
			•	-	
119	Unit	72	-	-	-
120	Unit	72	-	-	-
121	Unit	72	-	-	-
122	Unit	72	-	-	-
123	Unit	72	-	_	
124	Unit	72	_	_	_
125	Unit	72			
			-	-	-
126	Unit	72	-	-	-
127	Unit	72	-	-	-
128	Unit	72	-	-	-
129	Unit	72	-	-	-
130	Unit	72	-	_	-
131	Unit	72	-	-	_
132	Unit	72	-	-	-
133	Unit	72	-	-	-
134	Unit	72	-	-	-
135	Unit	72	-	-	-
136	Unit	72	-	-	
137	Unit	72	-	-	_
138	Unit	72	-		_
					-
139	Unit	72	-	-	-
140	Unit	72	-	-	-
141	Unit	72	-	-	-
142	Unit	72	-	-	-
143	Unit	72	-	-	-
144	Unit	72	-	-	_
145		72		-	
	Unit				
146	Unit	72 72	-	-	-
147	Unit	72	-	-	-
148	Unit	72	-	-	-
149	Unit	72	-	-	-
150	Unit	72		-	-

8458 Villa Serena SoundPLAN Data - HVAC

				Limit	Level w/o NP	Level w. NP	Difference	Conflict
No.	Receiver name	Building	Floor	Leq1	Leq1	Leq1	Leq1	Leq1
		side		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1	1		1.Fl	-	37.4	0	-37.4	-
2	2		1.Fl	-	39.7	0	-39.7	-
3	3		1.Fl	-	41.5	0	-41.5	-
4	4		1.Fl	-	42.2	0	-42.2	-
5	5		1.Fl	-	42.1	0	-42.1	-
6	6		1.Fl	-	42.1	0	-42.1	-
7	7		1.Fl	-	42.2	0	-42.2	-
8	8		1.Fl	-	42.0	0	-42.0	-
9	9		1.Fl	-	41.6	0	-41.6	-
10	10		1.Fl	-	41.2	0	-41.2	-
11	11		1.Fl	-	41.8	0	-41.8	-
12	12		1.Fl	-	41.9	0	-41.9	-
13	13		1.Fl	-	40.7	0	-40.7	-
14	14		1.Fl	-	38.8	0	-38.8	-
15	15		1.Fl	-	34.8	0	-34.8	-
16	16		1.Fl	-	36.1	0	-36.1	-
17	17		1.Fl	-	38.4	0	-38.4	-
18	18		1.Fl	-	39.6	0	-39.6	-
19	19		1.Fl	-	39.4	0	-39.4	-
20	20		1.Fl	-	39.9	0	-39.9	-
21	21		1.Fl	-	39.9	0	-39.9	-
22	22		1.Fl	-	40.4	0	-40.4	-
23	23		1.Fl	-	39.9	0	-39.9	-
24	24		1.Fl	-	38.9	0	-38.9	-
25	25		1.Fl	-	37.5	0	-37.5	-

	Level w/o	Nevel w. NP
Source name	Leq1	Leq1
1 1.Fl	dB(A) 37.4	dB(A) 0.0
1	22.5	0
2 3	22.3 21.9	0
4	18.7	0
5	18.2	0
6 7	17.8 19.9	0
8	19.9	0
9 10	17.3 19.7	0
11	19.7	0
12	19.7	0
13 14	10.7 10.7	0
15	10.7	0
16	9.1	0
17 18	9.2 9.0	0
19	8.5	0
20	8.2	0
21 22	8.0 6.9	0
23	7.3	0
24	7.3	0
25 26	9.7 12.3	0
27	12.3	0
28	7.3	0
29 30	7.7 7.6	0
31	9.2	0
32	9.9	0
33 34	9.8 11.5	0
35	11.8	0
36	11.8	0
37 38	14.6 15.1	0
39	15.1	0
40	25.8	0
41 42	25.7 25.8	0
43	26.7	0
44	26.7	0
45 46	26.6 26.7	0
47	26.6	0
48	26.6	0
49 50	1.9 1.9	0
51	1.9	0
52	2.4	0
53 54	2.4 2.4	0
55	1.0	0
56	1.0	0
57 58	1.1 0.7	0
59	0.5	0
60	0.5	0
61 62	-0.2 -0.2	0
63	2.3	0
64	-0.7	0
65 66	-0.8 -0.8	0
67	-1.8	0
68	-1.8	0
69 70	-1.8 0.9	0
71	-1.5	0
72	1.0	0
73 74	1.1 1.1	0
75	1.0	0
76	-1.4	0
77 78	-1.3 -1.3	0
79	-0.8	0
80	-0.8	0
81 82	-0.9 -0.1	0
83	-0.1	0
84 85	-0.1 1.5	0
85 86	1.5 1.4	0
87	0.6	0
88	-3.7	0
89 90	-3.7 -3.7	0
91	-4.3	0
92	-4.4	0
93 94	-4.3 -4.9	0
95	-4.7	0
96	-4.7	0
97 98	-4.7 -4.8	0
99	-4.8	0
100 101	-5.3 -5.3	0
101	-0.0	Ü

102		-5.3	0	
103 104		-3.3 -2.8	0	
105		-2.8	0	
106 107		-5.4 -2.9	0	
108 109		-3.3 -2.5	0	
110 111		-2.9 -5.4	0	
112 113		-5.0 -4.9	0	
114 115		-5.0 -4.5	0	
116		-4.5	0	
117 118		-4.5 -3.9	0	
119 120		-3.9 -3.8	0	
121 122		-6.9 -6.8	0	
123 124		-6.6 -6.6	0	
125 126		-6.8 -6.9	0	
127 128		-7.1 -7.3	0	
129 130		-4.5	0	
131		-7.5 -7.5	0	
132 133		-7.6 -5.4	0	
134 135		-5.3 -5.3	0	
136 137		-5.0 -5.0	0	
138 139		-5.4 -7.5	0	
140 141		-7.5 -7.5	0	
142 143		-7.3	0	
144		-7.4 -7.5	0	
145 146		-4.4 -6.9	0	
147 148		-6.9 -6.8	0	
149 150		-6.7 -6.7	0	
2	1.Fl	39.7 29.7	0.0	
2 3		29.4 29.4	0	
4		27.6	0	
5 6		27.4 27.2	0	
7				
8		23.8 23.2	0	
8 9 10		23.8	0	
9		23.8 23.2 18.5	0 0 0	
9 10 11 12 13		23.8 23.2 18.5 16.1 15.9 19.8 14.8	0 0 0 0 0 0	
9 10 11 12 13 14 15		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3	0 0 0 0 0 0 0	
9 10 11 12 13 14 15 16 17		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3 15.3	0 0 0 0 0 0 0 0	
9 10 11 12 13 14 15 16 17 18		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3 15.3 15.2 15.1	0 0 0 0 0 0 0 0 0 0	
9 10 11 12 13 14 15 16 17 18 19 20 21		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3 15.3 15.2 15.1 14.3 14.3	0 0 0 0 0 0 0 0 0 0 0	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23		23.8 23.2 18.5 16.1 15.9 19.8 15.0 15.3 15.3 15.2 15.1 14.3 14.3 14.3 22.7 22.6	0 0 0 0 0 0 0 0 0 0 0 0 0	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3 15.2 15.1 14.3 14.2 22.7 22.6 22.6 17.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3 15.3 15.2 15.1 14.3 14.3 14.2 22.7 22.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26		23.8 23.2 18.5 16.1 15.9 19.8 15.0 15.3 15.3 15.2 15.1 14.3 14.2 22.7 22.6 22.6 17.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3 15.3 15.2 15.1 14.3 14.2 22.7 22.6 17.8 17.8 17.4 15.2 15.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 7 28 29 30 31 32		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3 15.2 15.1 14.3 14.2 22.7 22.6 22.6 17.8 17.5 17.4 15.2 15.1 15.1 15.2		
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3 15.2 15.1 14.3 14.2 22.7 22.6 17.8 17.5 17.4 15.2 15.3 15.1 15.3 15.3 15.3 15.3 15.3 15.3		
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36		23.8 23.2 18.5 16.1 15.9 19.8 15.0 15.3 15.2 15.1 14.3 14.2 22.7 22.6 22.6 17.8 17.5 17.5 17.5 15.1 15.3 15.1 15.3 15.1 15.3 15.3 16.1 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17		
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 29 20 31 31 32 33 34 34 36 36 37 38		23.8 23.2 18.5 16.1 15.9 19.8 15.0 15.3 15.3 15.2 15.1 14.3 14.2 22.7 22.6 22.6 17.8 17.5 17.4 15.2 15.3 15.1 15.3 15.1 15.3 15.3 15.3 16.1 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17		
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39		23.8 23.2 18.5 16.1 15.9 19.8 15.0 15.3 15.2 15.1 14.3 14.2 22.7 22.6 22.6 22.6 22.6 17.5 17.4 15.3 15.1 15.3 15.1 15.3 15.3 16.2 29.6 17.5 17.4 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5		
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 39 39 39 39 39 39 39 39 39 39 39 39		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3 15.2 15.1 14.3 14.2 22.7 22.6 22.6 17.8 17.5 17.4 15.2 15.3 15.1 15.3 15.1 15.3 15.1 15.3 15.1 15.3 16.6 17.5 17.4 17.5 18.8 19.8 19.8 19.8		
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 29 30 31 31 32 33 33 34 40 41		23.8 23.2 18.5 16.1 15.9 19.8 15.0 15.3 15.2 15.1 14.3 14.2 22.7 22.6 22.6 17.8 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5		
9 10 11 12 13 14 15 16 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 44 45		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3 15.2 15.1 14.3 14.3 14.2 22.7 22.6 22.6 17.8 17.5 17.4 15.2 15.3 15.1 15.3 15.1 15.3 19.8 19.8 19.8 19.8 15.9 15.0 15.1 15.1 15.1		
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 34 35 36 37 38 39 40 40 44 44 45 46 46 47		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3 15.2 15.1 14.3 14.2 22.7 22.6 22.6 17.8 17.5 17.4 15.2 22.7 15.3 15.1 15.3 14.6 25.6 17.8 17.5 17.4 15.2 17.5 17.4 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5		
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 44 45 44 45 46 47 48 49		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3 15.2 15.1 14.3 14.2 22.7 22.6 22.6 22.6 17.8 17.5 17.4 15.2 15.3 15.1 15.3 14.6 15.5 19.7 15.3 19.8 19.8 19.8 19.8 19.9 15.0 15.1 15.1 18.4 19.2 19.4 19.4 20.2 13.4		
9 10 11 12 13 14 15 16 16 17 18 19 20 21 22 23 33 34 25 26 30 31 32 27 28 33 34 44 45 44 45 46 47 48 49 50 51		23.8 23.2 18.5 16.1 15.9 19.8 15.0 15.3 15.3 15.2 15.1 14.3 14.2 22.7 22.6 22.6 22.6 22.6 17.8 17.5 17.4 15.2 15.3 15.1 15.3 15.1 15.3 15.1 15.3 15.3		
9 10 11 12 13 14 15 16 16 17 18 19 20 21 22 23 32 24 25 62 7 28 29 30 31 32 33 34 34 34 44 44 45 46 46 47 48 49 50 51 52 53		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3 15.2 15.1 14.3 14.2 22.7 22.6 22.6 17.8 17.5 17.4 15.2 15.3 15.1 15.3 15.1 15.3 15.1 15.3 15.1 15.3 14.6 15.5 19.7 15.3 19.8 19.8 19.8 19.9 15.0 15.1 18.4 19.2 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4		
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 23 33 34 40 40 44 45 47 48 49 50 51 52 52 52		23.8 23.2 18.5 16.1 15.9 19.8 14.8 15.0 15.3 15.2 15.1 14.3 14.2 22.7 22.6 22.6 17.8 17.5 17.5 17.5 18.1 15.1 15.3 15.1 15.1 15.1 15.1 15.1 15		

56		16.3	0
57		16.4	0
58		16.3	0
59		16.3	0
60 61		16.8 15.3	0
62		15.0	0
63		18.8	0
64		15.1	0
65 66		15.4 14.9	0
67		14.4	0
68		14.5	0
69		14.5	0
70 71		17.4 15.0	0
72		17.4	0
73		16.8	0
74 75		16.8 17.2	0
76		12.3	0
77		12.1	0
78 79		10.6 12.3	0
80		11.2	0
81		9.6	0
82 83		13.4 13.0	0
84		12.5	0
85		15.0	0
86 87		12.1 12.5	0
88		10.6	0
89		10.7	0
90 91		10.6 11.1	0
92		12.0	0
93		12.4	0
94		7.8	0
95 96		11.2 10.9	0
97		11.8	0
98		9.8	0
99 100		9.9 11.1	0
101		9.9	0
102		10.0	0
103 104		13.1 13.1	0
104		13.1	0
106		10.9	0
107		13.4	0
108 109		13.6 14.0	0
110		14.0	0
111		9.8	0
112 113		10.3 9.5	0
114		7.9	0
115		11.0	0
116 117		10.8 8.8	0
118		7.9	0
119		8.0	0
120 121		9.6 7.8	0
122		8.6	0
123		11.0	0
$\frac{124}{125}$		11.2 9.4	0
126		8.9	0
127		8.4	0
128 129		8.4	0
130		12.4 9.6	0
131		7.8	0
132		7.8	0
133 134		11.6 11.7	0
135		11.5	0
136		11.6	0
137 138		11.6 10.6	0
139		7.3	0
140		6.3	0
141 142		9.4 7.3	0
143		5.3	0
144		4.0	0
145		11.8	0
146 147		8.1 7.7	0
148		3.8	0
149		4.5	0
150 3	1.Fl	4.8 41.5	0.0
1	1.11	41.5 29.9	0.0
2		29.8	0
3		30.1	0
4 5		30.0 29.8	0
6		29.8	0
7		25.6	0
8		25.2	0
9		19.7	U

10	17.9	0
11	17.8	0
12	17.6	0
13 14	17.0 17.3	0
15	17.7	0
16	17.6	0
17 18	23.4 23.3	0
19	21.6	0
20	22.6	0
21	22.5	0
22 23	24.0 24.0	0
24	24.0	0
25	22.0	0
26	21.9	0
27 28	21.8 23.2	0
29	23.7	0
30	23.7	0
31 32	17.2 17.3	0
33	17.3	0
34	17.5	0
35	17.3	0
36 37	17.3 21.4	0
38	21.5	0
39	21.5	0
40	19.6	0
41 42	19.8 15.8	0
43	21.7	0
44	22.1	0
45	22.3	0
46 47	19.6 19.8	0
48	20.1	0
49	14.7	0
50 51	14.9	0
51 52	17.7 18.6	0
53	18.5	0
54	18.5	0
55 56	17.4 17.3	0
57	17.4	0
58	17.3	0
59	17.3	0
60 61	17.8 16.2	0
62	15.9	0
63	19.8	0
64	15.9	0
65 66	16.3 15.9	0
67	15.3	0
68	15.3	0
69 70	15.3 18.3	0
71	15.8	0
72	18.3	0
73	18.1	0
74 75	17.6 17.5	0
76	16.1	0
77	13.1	0
78	11.7	0
79 80	13.3 12.1	0
81	10.6	0
82	16.7	0
83 84	13.9 13.5	0
85	17.9	0
86	13.0	0
87	13.3	0
88 89	11.3 11.4	0
90	11.4	0
91	11.6	0
92	12.6	0
93 94	13.0 8.5	0
95	11.7	0
96	11.5	0
97 98	12.5 10.4	0
99	10.4	0
100	11.6	0
101	10.4	0
102 103	10.9 13.6	0
103	13.6	0
105	13.6	0
106	11.5	0
107 108	13.9 14.1	0
108	14.1	0
110		-
111	14.6	0
	14.6 10.3	0
112	14.6 10.3 11.0	0
	14.6 10.3	0

115		11.0	0	
115 116		11.6 11.4	0	
117		9.5	0	
118		8.7	0	
119		8.7	0	
120 121		10.3 8.4	0	
122		9.2	0	
123		11.5	0	
$\frac{124}{125}$		11.8 9.9	0	
126		9.4	0	
127		8.8	0	
128 129		8.8 12.9	0	
130		10.0	0	
131		8.3	0	
132 133		8.3 12.1	0	
134		12.1	0	
135		12.0	0	
136 137		12.1 12.1	0	
138		11.2	0	
139		7.9	0	
140 141		7.0 9.9	0	
141		7.9	0	
143		5.9	0	
144		4.6	0	
145 146		12.3 8.8	0	
147		8.6	0	
148		4.4	0	
149 150		5.1 5.3	0	
4	1.Fl	42.2	0.0	
1		26.6	0	
2		26.8 26.9	0	
4		28.2	0	
5		28.7	0	
6 7		28.7 22.8	0	
8		22.5	0	
9		20.9	0	
10		23.5	0	
11 12		24.6 24.4	0	
13		25.0	0	
14		25.2	0	
15 16		25.2 25.3	0	
17		24.2	0	
18		24.1	0	
19 20		23.7 23.5	0	
21		23.5	0	
22		23.4	0	
23 24		23.2 23.1	0	
25		22.4	0	
26		23.2	0	
27 28		22.1 24.3	0	
29		24.5	0	
30		24.7	0	
31 32		24.7 24.7	0	
33		24.6	0	
34		24.7	0	
35 36		24.6 24.8	0	
37		25.0	0	
38		24.9	0	
39 40		23.4 17.5	0	
41		17.8	0	
42		20.3	0	
43 44		21.0 21.5	0	
45		22.1	0	
46		22.3	0	
47 48		22.6 22.9	0	
49		19.4	0	
50		19.4	0	
51 52		19.5 20.4	0	
53		20.4	0	
54		20.4	0	
55 56		18.7	0	
56 57		18.6 18.7	0	
58		18.6	0	
59 60		18.6	0	
60 61		19.1 17.3	0	
62		17.1	0	
63		20.9	0	
64 65		17.1 17.8	0	
66		16.9	0	
67		16.4	0	
68		16.4	0	

69 70		16.4 19.4		0
71 72 73		17.0 19.4 18.6		0 0
74 75 76		19.3 19.2 17.2		0 0
77 78 79		14.4 13.1 17.8		0
80 81 82		15.8 12.1 18.7		0
83 84 85		16.9 14.3 20.3		0 0
86 87 88		14.0 14.4 12.3		0 0
90 91		12.4 12.4 12.4		0 0
92 93 94 95		13.4 13.9 9.6 12.4		0 0 0
96 97 98		12.4 12.1 13.3 10.8		0 0 0
99 100 101		10.9 12.5 11.2		0 0
102 103 104		11.4 14.5 14.3		0 0 0
105 106 107		14.2 12.1 14.5		0 0 0
108 109 110		14.5 15.3 15.3		0 0 0
111 112 113		10.8 11.6 10.5		0 0 0
114 115 116		9.2 12.2 12.0		0 0 0
117 118 119		10.2 9.6 9.6		0 0
120 121 122		9.1 10.0		0 0
123 124 125 126		12.2 12.6 10.5		0 0 0
127 128 129		10.0 9.5 9.7 13.6		0 0
130 131 132		10.7 8.7 8.8		0 0 0
133 134 135		12.7 12.8 12.5		0 0
136 137 138		12.7 12.7 12.2		0 0
139 140 141		8.5 7.6 10.5		0 0 0
142 143 144		8.5 6.4 5.2		0 0
145 146 147		12.8 9.3 9.0		0 0
148 149 150 5	1.Fl	5.0 5.9 6.2 42.1	0.0	0
1 2 3	1.11	23.3 23.5 23.6	0.0	0 0
4 5 6		25.0 25.1 25.2		0 0 0
7 8 9		23.3 23.1 23.1		0 0 0
10 11 12		22.5 22.3 22.3		0 0
13 14 15 16		23.9 23.8 24.0 24.6		0 0 0
17 18 19		23.5 23.5 23.3		0 0 0
20 21 22		23.4 25.0 24.9		0 0

23	24.7	0
24	24.6	0
25	22.8	0
26	22.6	0
27	22.4	0
28	24.9	0
29	25.0	0
30	24.9	0
31	24.6	0
32		0
33	24.6	
	24.7	0
34	24.4	0
35	24.2	0
36	24.0	0
37	23.8	0
38	22.3	0
39	22.2	0
40	20.3	0
41	20.5	0
42	21.2	0
43	23.9	0
44	23.7	0
45	22.2	0
46	20.4	0
47	23.8	0
48	21.8	0
49	21.4	0
50	21.5	0
51	21.7	0
52	22.5	0
53	22.5	0
54 55	22.7 20.3	0
56	20.3	0
57 58	20.4 20.2	0
59		
	20.3	0
60	21.8 18.6	0
61 62	19.1	0
63	22.3	0
	18.4	
64	18.4	0
65 cc		
66	18.3 17.8	0
67 68	17.8	0
69	17.8	0
70	20.3	0
	18.3	0
71 72	20.8	0
73	20.5	0
74	20.5	0
75	20.0	
		0
76 77	18.3 18.4	0
78		
	16.6	0
79 80	20.2 17.5	0
81	13.4	0
82	21.9	0
83	18.8	0
84	19.9	0
85	22.2	0
86	15.3	0
87	20.3	0
88	10.5	0
89	10.7	0
90	10.7	0
91	13.3	0
92	14.4	0
93	14.9	0
94	10.8	0
95	13.2	0
96	13.0	0
97	14.2	0
98	11.9	0
99	12.0	0
100	13.6	0
101	12.4	0
102	12.2	0
103	15.8	0
104	15.0	0
105	15.1	0
106	13.4	0
107	15.1	0
108	15.2	0
109	15.7	0
110	15.3	0
111	11.0	0
112	13.3	0
113	11.1	0
114	9.7	0
115	13.9	0
116	12.7	0
117 118	11.0	0
	10.6	0
119	10.7	0
190	10.7	
120	12.2	0
121	12.2 10.0	0
121 122	12.2 10.0 10.9	0 0 0
121 122 123	12.2 10.0 10.9 13.0	0 0 0
121 122 123 124	12.2 10.0 10.9 13.0 13.6	0 0 0 0
121 122 123 124 125	12.2 10.0 10.9 13.0 13.6 11.2	0 0 0 0 0
121 122 123 124	12.2 10.0 10.9 13.0 13.6	0 0 0 0

128		10.3	0
129		14.3	0
130		11.4	0
131		9.4	0
132 133		9.4 13.4	0
134		13.5	0
135		13.2	0
136 137		13.4 13.4	0
137		12.9	0
139		9.0	0
140		8.1	0
141 142		11.1 9.1	0
143		7.2	0
144		6.0	0
145 146		13.5	0
146		9.8 9.5	0
148		5.9	0
149		6.6	0
150 6	1.Fl	6.9 42.1	0.0
1	1.11	21.0	0.0
2		21.1	0
3		21.0	0
4 5		22.4 22.3	0
6		22.4	0
7		20.4	0
8 9		20.4 21.0	0
10		20.1	0
11		20.0	0
12		18.1	0
13 14		24.7 24.8	0
15		24.6	0
16		22.9	0
17		21.8	0
18 19		22.0 20.6	0
20		21.2	0
21		23.8	0
22		24.3	0
23 24		25.0 24.9	0
25		23.6	0
26		23.6	0
27 28		23.4	0
28 29		$24.0 \\ 24.7$	0
30		24.6	0
31		21.4	0
32 33		24.1 24.0	0
34		22.4	0
35		22.8	0
36		23.1	0
37 38		22.0 22.7	0
39		22.6	0
40		22.3	0
41 42		22.4 20.0	0
43		22.6	0
44		22.7	0
45		22.8	0
46 47		20.6 22.9	0
48		20.6	0
49		21.3	0
50 51		21.3 20.9	0
52		24.5	0
53		24.5	0
54 55		24.4	0
ээ 56		21.9 21.9	0
57		22.0	0
58		22.4	0
59 60		22.1 22.8	0
61		20.5	0
62		20.9	0
63		24.4	0
64 65		20.3 20.1	0
66		20.1	0
67		19.5	0
68		19.4	0
69 70		19.4 20.7	0
71		20.0	0
72		22.3	0
73 74		21.4	0
74 75		21.7 21.8	0
76		22.0	0
77		21.6	0
78 79		18.5 22.8	0
80		19.2	0
81		20.6	0

82		23.3		0
83		23.5		0
84		21.5		0
85		23.8		0
86 87		18.4 22.3		0
88		12.0		0
89		12.1		0
90		15.1		0
91 92		14.3 15.5		0
93		16.1		0
94		12.3		0
95 96		14.2 14.9		0
97		15.6		0
98		12.9		0
99 100		13.0 15.0		0
101		13.2		0
102 103		12.9		0
103		16.7 15.9		0
105		16.0		0
106		14.2 16.7		0
107 108		16.7		0
109		16.3		0
110 111		16.3 12.0		0
112		14.1		0
113		12.1		0
114		10.7 14.4		0
115 116		13.4		0
117		11.9		0
118 119		11.9 11.9		0
120		13.0		0
121		11.0		0
122		11.9		0
123 124		13.8 14.6		0
125		11.5		0
126		10.9		0
127 128		10.9 11.1		0
129		15.1		0
130		12.3		0
131 132		10.1 10.0		0
133		14.2		0
134		14.3		0
135 136		14.1 14.2		0
137		14.1		0
138		13.6		0
139 140		12.1 9.3		0
141		12.1		0
142		10.0		0
143 144		8.2 6.9		0
145		14.4		0
146 147		10.8		0
147		10.5 6.8		0
149		7.6		0
150	1 171	7.8	0.0	0
7 1	1.Fl	42.2 19.2	0.0	0
2		19.2		0
3		18.8 20.1		0
5		20.1		0
6		20.1		0
7 8		18.1 18.0		0
9		19.2		0
10		16.4		0
11 12		15.7 16.0		0
13		22.6		0
14		22.9		0
15 16		23.0 23.5		0
17		20.0		0
18		20.2		0
19 20		19.3 19.6		0
21		21.9		0
22		22.8		0
23 24		22.7 22.6		0
25		21.7		0
26		21.6		0
27 28		21.5 20.6		0
29		23.6		0
30		23.2		0
31 32		20.4 23.1		0
33		22.9		0
34 35		20.1 22.4		0
30		44.4		5

36	22.3	0
37	19.4	0
38	20.2	0
39 40	21.3 20.5	0
41	20.6	0
42	20.9	0
43 44	21.2 21.2	0
45	21.3	0
46	18.9	0
47	21.3	0
48 49	19.1 23.0	0
50	23.2	0
51	23.4	0
52	24.6	0
53 54	24.7 24.9	0
55	23.1	0
56	23.0	0
57	23.2	0
58 59	24.5 23.4	0
60	24.4	0
61	22.5	0
62	22.7	0
63 64	26.3 22.1	0
65	22.0	0
66	21.9	0
67	21.5 21.5	0
68 69	21.5	0
70	22.5	0
71	22.0	0
72	24.3	0
73 74	23.9 23.9	0
75	23.7	0
76	23.6	0
77	23.6	0
78 79	20.8 24.5	0
80	23.9	0
81	21.8	0
82	24.5	0
83 84	24.6 22.5	0
85	24.9	0
86	22.7	0
87	22.9	0
88 89	17.0 16.9	0
90	16.9	0
91	15.6	0
92 93	16.8 17.6	0
94	14.0	0
95	16.2	0
96	16.1	0
97 98	16.9 14.0	0
99	14.0	0
100	16.3	0
101	14.1	0
102 103	13.8 17.9	0
104	18.0	0
105	17.0	0
106	14.9	0
107 108	17.3 17.7	0
109	18.3	0
110	17.3	0
111 112	13.1 16.4	0
113	13.3	0
114	12.0	0
115	16.9	0
116 117	17.1 13.4	0
118	13.4	0
119	13.6	0
120	14.3	0
121 122	12.1 13.2	0
123	14.8	0
124	15.9	0
125	12.3	0
126 127	11.8 11.8	0
128	12.0	0
129	16.1	0
130	13.2	0
131 132	10.9 10.9	0
133	15.1	0
134	15.2	0
135	15.2	0
136 137	15.2 15.1	0
138	15.0	0
139	12.9	0
140	10.2	0

141		13.0	0
142 143		11.3 9.4	0
144		8.1	0
145		15.4	0
146		12.0	0
147 148		11.8 8.0	0
149		8.8	0
150		9.1	0
8	1.Fl	42.0 17.5	0.0
2		17.4	0
3		16.8	0
5		18.3 18.3	0
6		18.0	0
7 8		16.1 16.0	0
9		17.5	0
10		14.0	0
11 12		13.9 14.0	0
13		21.0	0
14		20.8	0
15 16		21.2 21.7	0
17		18.3	0
18 19		18.4 17.4	0
20		17.4	0
21		20.0	0
22 23		20.2 20.1	0
24		20.1	0
25		19.6	0
26 27		19.5 19.4	0
28		19.2	0
29 30		22.2	0
31		22.1 18.5	0
32		21.2	0
33 34		21.1 18.7	0
35		18.5	0
36 37		18.5	0
38		15.9 16.2	0
39		17.6	0
40 41		19.3 19.3	0
42		19.4	0
43		19.7	0
44 45		19.7 19.7	0
46		17.3	0
47 48		19.8 17.4	0
49		22.5	0
50		22.6	0
51 52		22.8 23.2	0
53		23.3	0
54 55		23.2 22.5	0
56		22.7	0
57		22.6	0
58 59		24.6 23.6	0
60		24.5	0
61 62		23.4 23.7	0
63		24.9	0
64		23.4	0
65 66		23.3 23.4	0
67		23.9	0
68 69		23.9 23.8	0
70		23.2	0
71		21.2	0
72 73		21.4 23.0	0
74		22.8	0
75 76		22.7 24.7	0
77		24.7	0
78		24.8	0
79 80		25.1	0
81		25.0 22.9	0
82		25.2	0
83 84		25.1 23.0	0
85		24.7	0
86		22.7	0
87 88		22.9 19.1	0
89		19.1	0
90 91		19.0 17.4	0
92		18.3	0
93 94		19.2 15.8	0
94		16.8	U

95 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 111 113 114 115 116 117 118 119 122 123 124 125 129 130 131 132 124 125 131 132 133 134 135 137 138 139 140 141 144 145 146 147 148 149 140 150 160 170 180 180 190 190 190 190 190 190 190 19	1.F1	17.6 17.5 18.3 15.2 15.3 17.7 15.2 14.8 19.2 19.3 19.4 16.6 18.9 18.4 19.4 17.0 18.7 16.5 15.4 18.1 18.2 16.8 18.3 18.4 18.5 14.6 16.5 17.1 13.2 12.8 12.9 13.0 17.2 14.3 11.7 16.1 16.2 16.1 16.1 16.1 16.1 16.1 16.1	0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22		16.6 16.7 16.3 14.4 14.3 15.9 12.5 12.1 19.7 19.2 19.5 19.9 16.7 16.6 15.9 16.2 18.1 17.9		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

49		20.9	0
50		21.1	0
51		21.2	0
52 53		21.4 21.3	0
54		21.4	0
55		20.8	0
56		20.8	0
57 58		23.2 23.0	0
59		22.2	0
60		22.5	0
61		22.4	0
62		22.6	0
63 64		23.1 23.1	0
65		23.0	0
66		23.0	0
67		25.2	0
68 69		25.2 25.3	0
70		22.2	0
71		22.3	0
72		22.3	0
73 74		21.4 23.4	0
75		23.4	0
76		24.9	0
77		24.9	0
78		25.1	0
79 80		24.8 24.9	0
81		22.7	0
82		24.1	0
83		24.5	0
84 85		22.3 23.5	0
86		21.6	0
87		21.8	0
88		21.6	0
89 90		21.6 21.6	0
91		19.8	0
92		20.0	0
93		21.1	0
94		18.1	0
95 96		19.4 19.2	0
97		20.1	0
98		16.8	0
99		17.2	0
100		19.4	0
101 102		16.4 17.0	0
103		20.8	0
104		20.9	0
105		20.9	0
106 107		17.3 19.6	0
108		20.2	0
109		20.2	0
110		20.1	0
111 112		18.3 21.4	0
113		20.6	0
114		17.5	0
115		20.5	0
116 117		20.6 18.2	0
118		20.3	0
119		20.6	0
120		17.5	0
121 122		15.1 16.5	0
123		17.2	0
124		18.2	0
125		14.2	0
126 127		13.9 14.1	0
128		14.2	0
129		18.4	0
130		15.6	0
131		12.8 12.7	0
132 133		17.2	0
134		17.3	0
135		17.3	0
136 137		17.3 17.2	0
137		17.2	0
139		15.6	0
140		12.7	0
141		15.7	0
142 143		13.8 11.6	0
144		10.8	0
145		17.6	0
146		15.1	0
147 148		14.1 10.7	0
149		11.5	0
150		11.9	0
10	1.Fl	41.2	0.0
1 2		14.4 14.2	0
			-

0	10.5	0
3 4	13.5 15.0	0
5	14.9	0
6	14.6	0
7	12.7	0
8	12.6	0
9	14.1	0
10	10.8	0
11	10.4	0
12	10.6	0
13	17.9	0
14	17.7	0
15	17.6	0
16	18.2	0
17	15.2	0
18	14.8 14.5	0
19 20	14.5	0
21	16.2	0
22	15.6	0
23	15.5	0
24	15.4	0
25	11.2	0
26	11.0	0
27	11.1	0
28	11.5	0
29	13.1	0
30	15.7	0
31	15.6	0
32	14.7	0
33	15.8	0
34 35	13.2 14.2	0
36	15.3	0
37	12.9	0
38	13.6	0
39	13.8	0
40	16.7	0
41	16.7	0
42	16.7	0
43	16.7	0
44	16.7	0
45	16.8	0
46	14.3	0
47	16.8	0
48	14.3	0
49	18.9	0
50 51	21.3 21.2	0
52	19.1	0
53	19.1	0
54	19.0	0
55	17.9	0
56	18.2	0
57	20.5	0
58	20.4	0
59	19.7	0
60	19.8	0
61	20.1	0
62	20.5	0
63 64	18.4 21.0	0
65	21.0	0
66	17.9	0
67	23.5	0
68	23.7	0
69	23.8	0
70	23.1	0
71	23.9	0
72	23.7	0
73	20.6	0
74	20.5	0
75 76	20.7 19.7	0
77	21.4	0
78	22.5	0
79	22.5	0
80	22.5	0
81	18.7	0
82	20.2	0
83	20.2	0
84	17.9	0
85	22.0	0
86	19.2 19.7	0
87 88	24.3	0
89	24.3	0
90	24.4	0
91	23.1	0
92	22.4	0
93	23.6	0
94	22.3	0
95	21.6	0
96	21.6	0
97	19.8	0
98	19.3	0
99	20.6	0
100	18.7	0
101 102	19.4 20.1	0
102	23.0	0
103	22.9	0
104	22.9	0
106	19.3	0
107	21.5	0

108		01.0	^
109		21.6 22.1	0
110 111		22.0 21.9	0
112 113		22.2 22.5	0
114		18.7	0
115 116		23.1 23.3	0
117 118		22.5 18.3	0
119 120		18.3 18.2	0
121		19.8	0
122 123		19.2 19.0	0
124 125		17.0 15.7	0
126		15.6	0
$\frac{127}{128}$		15.8 16.0	0
129 130		20.0 17.3	0
131 132		14.1 14.8	0
133 134		18.7 18.8	0
135		18.9	0
136 137		18.4 18.5	0
138 139		18.5 16.9	0
140 141		13.6 17.0	0
142		17.2	0
143 144		13.2 12.2	0
145 146		20.2 20.1	0
147 148		19.6 12.7	0
149		13.5	0
150 11	1.Fl	13.8 41.8	0.0
1 2		13.2 13.1	0
3		12.3 13.8	0
5 6		13.7 13.4	0
7		11.5 11.5	0
9		13.0	0
10 11		9.5 9.3	0
12 13		9.6 16.8	0
14 15		16.6 16.4	0
16 17		17.1 14.0	0
18 19		13.5 13.6	0
20		15.0	0
21 22		14.9 14.0	0
23 24		13.9 13.9	0
25 26		10.2 10.1	0
27 28		10.2 11.0	0
29		13.0	0
30 31		14.6 11.1	0
32 33		12.6 14.5	0
34 35		12.5 13.5	0
36 37		14.0 12.3	0
38 39		12.9 13.1	0
40		15.6	0
41 42		15.6 15.6	0
43 44		15.6 15.6	0
45 46		15.6 13.1	0
47 48		15.6 13.2	0
49		19.9	0
50 51		20.0 20.1	0
52 53		17.5 17.5	0
54 55		17.5 16.2	0
56 57		16.1 18.9	0
58		18.7	0
59 60		18.0 18.1	0
61		18.4	0

62		18.7	0
63 64		14.0 16.5	0
65		16.5	0
66 67		16.6 21.0	0
68		21.2	0
69		21.5	0
70 71		20.2 21.8	0
72		20.9	0
73 74		19.4 18.7	0
75		18.3	0
76 77		19.8 21.1	0
78		22.7	0
79		21.6 22.1	0
80 81		21.8	0
82 83		21.6	0
84		21.4 18.4	0
85		17.9	0
86 87		20.2 20.2	0
88		24.1	0
89 90		24.4 24.5	0
91		24.5	0
92 93		23.8 25.0	0
94		24.6	0
95 96		23.2 23.2	0
97		21.7	0
98		22.4	0
99 100		23.1 21.7	0
101		22.1	0
102 103		22.1 25.1	0
104		25.1	0
105 106		25.0 21.8	0
107		24.0	0
108 109		23.4 22.0	0
110		24.1	0
111 112		23.7 24.3	0
113		24.3	0
114 115		24.5 24.5	0
116		24.6	0
117 118		24.6 22.8	0
119		23.0	0
120 121		23.2 21.7	0
122		19.4	0
123 124		19.9 17.6	0
125		17.3	0
126 127		21.0 17.4	0
128		17.5	0
129 130		21.8 18.8	0
131		15.6	0
132 133		16.4 20.1	0
134		20.4	0
135 136		20.4 19.8	0
137		19.7	0
138 139		19.9 18.1	0
140		18.5	0
141 142		18.6 21.2	0
143		17.6	0
144 145		14.0 21.8	0
146		21.8	0
147 148		21.9 16.7	0
149		15.8	0
150 12	1.Fl	16.2 41.9	0.0
1	1.1.1	11.8	0.0
2 3		11.6 10.8	0
4		12.4	0
5		12.3	0
6 7		11.9 10.0	0
8		10.0 11.5	0
10		8.0	0
11 12		7.7 8.1	0
13		15.2	0
14 15		15.2 14.9	0
-			-

16	15.4	0
17	12.7	0
18	11.9	0
19	12.4	0
20	13.4	0
21	13.4	0
22	12.2	0
23	12.1	0
24	8.4	0
25	8.3	0
26	8.1	0
27	8.3	0
28	9.3	0
29	11.5	0
30	11.8	0
31	9.6	0
32	11.3	0
33	11.5	0
34	9.9	0
35	11.0	0
36	11.2	0
37	11.0	0
38	11.7	0
39	11.8	0
40	14.3	0
41	14.3	0
42	14.3	0
43	14.2	0
44	14.2	0
45	14.3	0
46	11.8	0
47	14.3	0
48	11.8	0
49	17.7	0
50	17.7	0
51	17.7	0
52	15.4	0
53	15.5	0
54	15.5	0
55 56	13.9 14.1	0
57	16.6	0
58	16.5	0
59	15.9	0
60	16.0	0
61	13.8	0
62	14.1	0
63	11.1	0
64	14.5	0
65	14.5	0
66	14.6	0
67	18.2	0
68	18.3	0
69	18.4	0
70	16.8	0
71	18.5	0
72	17.5	0
73	15.8	0
74	16.8	0
75	16.7	0
76	14.9	0
77	16.5	0
78	17.9	0
79	15.7	0
80	17.5	0
81	19.9	0
82	18.9	0
83	17.1	0
84	17.1	0
85	14.8	0
86	18.7	0
87	18.5	0
88	24.1	0
89	24.2	0
90 91	24.3 23.0	0
92	22.5	0
93	23.9	0
94	23.9	0
95	22.7	0
96	22.9	0
97	23.1	0
98	21.5	0
99	24.9	0
100	23.3	0
101	23.4	0
102	23.3	0
103	25.0	0
104	24.9	0
105	24.7	0
106	22.6	0
107	19.2	0
108	22.2	0
109	22.9	0
110	22.7	0
111	24.5	0
112	24.2	0
113	23.9	0
114 115	24.4 22.7	0
116	23.9	0
		0
117 118	23.8 20.8	0
118	20.8	0
120	20.5	0

121		26.8	0
122		27.8	0
123		23.4	0
124		20.9	0
125		21.5	0
126		21.5	0
127		20.8	0
128		20.8	0
129		25.0	0
130		19.3	0
131		19.4	0
132		20.2	0
133		22.8	0
134		23.1	0
135		23.0	0
136		20.7	0
137		21.9	0
138		22.0	0
139		22.8	0
140		22.9	0
141		20.7	0
142		23.3	0
143		20.1	0
144		17.6	0
145		21.5	0
146		23.6	0
147		23.7	0
148		22.6	0
149		22.7	0
150		21.5	0
13	1.Fl	40.7	0.0
1		10.3	0
2		10.1	0
3		9.3	0
4		10.8	0
5		10.7	0
6		10.3	0
7		8.5	0
8		8.4	0
9		10.0	0
10		6.3	0
11		6.2	0
12		6.6	0
13		13.6	0
14		13.6	0
15		13.3	0
16		13.8	0
17		11.1	0
18		10.3	0
19		10.9	0
20		11.6	0
21		11.7	0
22		10.2	0
23		10.2	0
24		6.4	0
25		6.0	0
26		5.9	0
27		6.0	0
28		7.0	0
29		9.0	0
30		9.3	0
31		7.2	0
32		8.9	0
33		9.1	0
34		8.3	0
35		9.4	0
36		9.6	0
37		8.3	0
38		9.1	0
39		9.3	0
40		12.8	0
41		12.8	0
42		12.8	0
43		12.7	0
44		12.8	0
45 46		12.8	0
46 47		10.3 12.8	0
48		10.3	0
48 49		15.8	0
50		15.8	0
51		15.8	0
52		12.7	0
53		12.7	0
54		13.4	0
55		10.9	0
56		11.1	0
57		13.6	0
58		12.8	0
59		11.7	0
60		11.8	0
61		11.0	0
62		11.5	0
63		8.4	0
64		12.3	0
65		12.5	0
66		12.6	0
67		15.4	0
68		15.4	0
69		15.6	0
70		13.6	0
71		15.4	0
72		14.4	0
73		12.8	0
74		8.4	0

75		8.3	0
76 77		8.7 9.5	0
78		14.7	0
79 80		13.5 13.9	0
81 82		17.5 13.2	0
83		14.7	0
84 85		14.7 12.6	0
86 87		16.6 16.7	0
88 89		19.3 20.9	0
90		20.9	0
91 92		19.4 18.7	0
93 94		19.6 22.6	0
95 96		19.3 19.2	0
97		18.7	0
98 99		18.7 21.6	0
100 101		20.5 20.5	0
102 103		20.7 21.7	0
104 105		21.8	0
106		21.7 20.0	0
107 108		20.4 20.3	0
109 110		15.6 15.4	0
111 112		19.3 17.6	0
113		21.9	0
114 115		21.8 17.0	0
116 117		20.3 21.1	0
118 119		20.3 20.4	0
120 121		18.1 27.3	0
122		27.2	0
123 124		23.4 22.8	0
125 126		22.8 22.0	0
127 128		23.8 23.9	0
129		25.4	0
130 131		23.6 23.7	0
132 133		23.9 24.5	0
134 135		24.3 23.9	0
136 137		18.2 22.1	0
138		21.9	0
139 140		24.0 24.2	0
141 142		22.2 23.9	0
143 144		23.7 21.7	0
145 146		21.7 23.7	0
147		23.6	0
148 149		21.3 21.3	0
150 14	1.Fl	21.6 38.8	0.0
1 2		9.0 8.8	0
3 4		8.1 9.5	0
5		9.4	0
6 7		9.0 7.2	0
8 9		7.2 8.7	0
10 11		2.9 2.8	0
12 13		3.1 10.5	0
14		9.9	0
15 16		11.8 12.4	0
17 18		9.3 7.8	0
19 20		7.5 7.5	0
21 22		7.4 3.9	0
23		3.8	0
24 25		3.8 4.0	0
26 27		3.9 4.0	0
28		4.8	0

29	6.5	0
30	6.8	0
31	5.0	0
32	6.4	0
33	6.6	0
34	5.2	0
35	6.1	0
36	6.4	0
37	5.1	0
38	5.7	0
39	6.0	0
40 41	11.0	0
42	10.9 10.9	0
43	9.7	0
44	11.6	0
45	11.6	0
46	9.1	0
47	11.6	0
48	9.1	0
49	13.1	0
50 51	14.5 14.5	0
52	11.4	0
53	10.5	0
54	10.1	0
55	9.8	0
56	11.6	0
57	11.6	0
58	10.5	0
59 60	9.7 10.6	0
61	10.6	0
62	9.4	0
63	6.5	0
64	10.2	0
65	11.7	0
66	10.8	0
67	14.1	0
68	14.1	0
69 70	13.9 11.5	0
71	7.0	0
72	6.2	0
73	5.1	0
74	4.9	0
75	4.6	0
76	4.8	0
77	5.5	0
78 79	5.7 5.4	0
80	5.7	0
81	10.5	0
82	5.6	0
83	5.9	0
84	8.2	0
85	5.2	0
86	9.5	0
87	12.4	0
88 89	14.8 16.1	0
90	15.9	0
91	17.2	0
92	17.0	0
93	15.9	0
94	20.0	0
95 96	16.9	0
96 97	17.8 16.3	0
98	18.6	0
99	18.7	0
100	15.3	0
101	15.8	0
102	15.4	0
103	18.2 18.3	0
104 105	18.2	0
106	10.4	0
107	9.4	0
108	9.2	0
109	8.6	0
110	8.3	0
111	8.7	0
112 113	8.9 10.0	0
114	10.6	0
115	8.6	0
116	9.4	0
117	15.6	0
118	14.2	0
119	14.7	0
120 121	12.6	0
121 122	23.8 24.4	0
122	21.9	0
124	17.7	0
125	17.8	0
126	21.2	0
127	24.1	0
128	24.4	0
129	20.7	0
130 131	25.7 25.9	0
132	26.3	0
133	29.8	0

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 15 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 14 15 16 16 17 18 19 19 19 10 10 10 10 11 11 11 11 11 11 11 11 11	1.F1	28.2 27.7 19.5 19.1 18.1 18.8 18.7 14.2 13.2 13.2 11.5 16.6 17.7 15.6 34.8 -9.0 -9.1 -9.1 -8.7 -8.7 -8.7 -8.7 -8.6 -8.4 -8.5 -8.5 -8.7 -7.7 -7.5 -7.4 -7.4 -7.1 -7.1 -7.1 -7.1 -7.1 -7.1 -7.1 -7.1	
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 81 82 83 84 85 86 86 87 87 87 87 88 88 88 88 88 88		-8.6 -8.8 -8.7 -5.6 -5.6 -5.6 -5.8 -6.2 -8.7 -3.1 -3.1 -3.1 -5.6 -6.1 -5.2 -5.1 -4.9 -4.9 -4.8 -4.5 -4.6 -4.1 -4.0 -3.5 -3.4 -3.2 -3.3 -3.4 -3.5 -3.6 -4.1 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0	

42	8.4	0
43	8.2	0
44 45	1.7 1.7	0
46	-1.6	0
47	0.8	0
48 49	-1.9 9.8	0
50	12.4	0
51	12.3	0
52	3.7	0
53 54	3.3 2.8	0
55	2.2	0
56	2.3	0
57 58	1.7 0.2	0
59	0.2	0
60	0.1	0
61 62	0.3	0
63	-0.4	0
64	0.8	0
65	0.7	0
66 67	0.5 0.8	0
68	0.2	0
69	0.2	0
70 71	0.9 1.5	0
72	1.3	0
73	2.8	0
74 75	3.6 3.6	0
76	9.9	0
77	11.1	0
78 79	11.7 9.7	0
80	10.1	0
81	12.5	0
82 83	9.0 9.3	0
84	9.4	0
85	8.0	0
86	11.9	0
87 88	11.2 8.9	0
89	13.2	0
90	7.2	0
91 92	4.0 3.9	0
93	4.0	0
94	7.8	0
95 96	5.3 5.5	0
97	6.4	0
98	6.4	0
99 100	6.5	0
101	6.2 6.2	0
102	6.1	0
103	6.6	0
104 105	7.6 7.4	0
106	10.5	0
107	9.8 16.5	0
108 109	11.0	0
110	12.1	0
111	17.2	0
112 113	16.1 16.5	0
114	16.4	0
115 116	15.3 15.9	0
117	15.9	0
118	13.2	0
119	11.7	0
120 121	8.5 14.2	0
122	15.3	0
123	15.3	0
124 125	16.1 16.2	0
126	16.2	0
127	16.0	0
128 129	13.1 11.0	0
130	17.0	0
131	17.2	0
132 133	13.0 14.4	0
134	15.3	0
135	15.8	0
136 137	23.5	0
137	25.9 25.6	0
139	22.3	0
140	22.2	0
141 142	21.8 21.6	0
143	21.4	0
144	23.4	0
145 146	20.3 20.8	0
110	20.0	U

147		20.6	0
148		21.5	0
149		21.1 19.1	0
150 17	1 171	38.4	0.0
	1.Fl		
1		-1.7	0
2		-1.8	0
3		-1.8	0
4		-1.9	0
5		-1.9	0
6		-2.0	0
7		0.4	0
8		0.4	0
9		1.3	0
10		0.7	0
11		0.7	0
12		0.9	0
13		7.7	0
14		7.7	0
15		7.7	0
16		5.5	0
17		2.9	0
18		2.7	0
19		5.3	0
20		5.2	0
21		5.3	0
22		2.6	0
23		2.5	0
24		2.5	0
25		3.4	0
26		3.8	0
27		4.3	0
28		8.1	0
29		10.1	0
30		10.2	0
31		9.3	0
32		10.4	0
33		10.6	0
34		8.5	0
35		9.4	0
36		9.6	0
37		8.8	0
38		6.7	0
39		8.5	0
40		10.2	0
41		11.8	0
42		11.8	0
43		8.1	0
44		5.5	0
45		5.3	0
46		2.7	0
47		5.1	0
48		2.5	0
49		11.7	0
50		12.2	0
51		12.2	0
52		11.7	0
53		11.7	0
54		11.8	0
55		6.3	0
56		6.4	0
57		6.5	0
58		3.0	0
59		3.0	0
60		3.0	0
61		3.3	0
62		3.0	0
63		2.3	0
64		3.1	0
65		3.0	0
66		2.8	0
67		2.6	0
68		2.1	0
69		2.0	0
70		3.4	0
71		3.9	0
72		3.8	0
73		13.3	0
74		13.4	0
75 70		13.3	0
76		11.7	0
77		13.0	0
78		13.2	0
79		14.2	0
80		14.3	0
81		13.7	0
82		12.1	0
83		12.0	0
84		12.4	0
85		11.1	0
86		15.3	0
87		13.4	0
88		13.4	0
89		12.2	0
90		10.6	0
91		8.0	0
92		6.7	0
93		6.9	0
94		14.8	0
95		12.5	0
96		12.6	0
97		14.2	0
98		14.5	0
99		14.8	0
100		15.9	0

101		14.7	0
102 103		14.8 9.0	0
104 105		9.8	0
106 107 108		23.0 22.5 21.1	0 0 0
109 110		14.5 19.8	0
111 112		20.9 19.6	0
113 114		19.5 19.3	0
115 116		18.6 18.7	0
117 118		18.5 19.7	0
119 120 121		15.3 14.5 16.9	0 0 0
122 123		17.8 19.4	0
124 125		18.2 18.2	0
126 127		18.5 17.7	0
128 129		17.7 15.4	0
130 131 132		18.0 17.9 17.8	0 0 0
133 134		14.9 16.5	0
135 136		17.0 22.2	0
137 138		22.2 25.0	0
139 140		24.7 24.7	0
141 142 143		23.2 24.8 24.8	0 0 0
144 145		24.4 24.3	0
$\frac{146}{147}$		$24.7 \\ 24.6$	0
148 149		25.4 19.8	0
150 18 1	1.Fl	19.5 39.6 2.2	0.0
2 3		2.2 2.2	0
4 5		2.1 2.0	0
6 7 8		2.0 0.9 0.9	0 0 0
9 10		1.7 2.1	0
11 12		2.6 2.9	0
13 14		8.6 8.6	0
15 16		8.5 6.3	0
17 18 19		3.3 3.2 5.7	0 0 0
20 21		5.8 5.8	0
22 23		3.4 3.6	0
24 25		3.6 5.3	0
26 27 28		6.3 6.4 9.7	0 0 0
29 30		13.0 12.9	0
31 32		10.9 12.0	0
33 34		12.1 11.8	0
35 36 37		12.2 11.9 10.2	0 0 0
38 39		10.5 11.5	0
40 41		11.9 12.7	0
42 43		12.8 9.6	0
44 45 46		7.1 6.9 3.7	0 0 0
47 48		6.2 3.5	0
49 50		13.9 13.4	0
51 52		13.5 9.6 9.7	0
53 54		10.0	0

55		13.4	0
56		13.5	0
57		13.5	0
58		9.9	0
59 60		9.8 9.8	0
61		10.3	0
62		9.6	0
63		8.4	0
64 65		12.5 12.4	0
66		11.6	0
67		9.2	0
68		7.8	0
69		7.7	0
70 71		5.7 6.1	0
72		6.3	0
73		16.4	0
74		16.4	0
75 76		16.4 16.7	0
77		17.3	0
78		17.2	0
79		16.6	0
80 81		16.1 17.7	0
82		16.0	0
83		16.0	0
84		13.8	0
85 86		13.1 16.4	0
87		16.6	0
88		16.5	0
89		16.9	0
90 91		16.5 15.7	0
92		16.9	0
93		16.3	0
94		16.2	0
95 96		17.8 16.4	0
97		18.0	0
98		18.0	0
99		15.9	0
100 101		19.6 19.6	0
102		19.6	0
103		16.3	0
104		16.7	0
105 106		17.4 21.7	0
107		21.7	0
108		25.5	0
109		25.2	0
110 111		25.4 25.5	0
112		24.3	0
113		24.0	0
114 115		23.9 23.1	0
116		23.0	0
117		22.6	0
118		22.3	0
119 120		22.2 19.3	0
121		19.4	0
122		16.5	0
123		20.0	0
$\frac{124}{125}$		18.7 18.1	0
126		17.8	0
127		14.4	0
128		12.7	0
129 130		12.3 13.9	0
131		13.6	0
132		13.4	0
133		12.1 15.9	0
134 135		16.0	0
136		18.8	0
137		21.0	0
138		21.6	0
139 140		19.9 21.3	0
141		21.3	0
142		21.8	0
143 144		22.1 21.7	0
144		24.1	0
146		23.0	0
147		22.2	0
148 149		24.6 24.6	0
149		24.6	0
19	1.Fl	39.4	0.0
1		1.9	0
2		1.9 1.7	0
4		1.7	0
5		1.6	0
6 7		1.6 2.3	0
8		2.3	0

9	3.0	0
10	4.2	0
11	4.2	0
12	4.3	0
13	12.0	0
14	9.5	0
15	9.2	0
16	8.9	0
17	4.9	0
	4.8	
18		0
19	6.7	0
20	6.8	0
21	6.8	0
22	5.0	0
23	5.0	0
24	5.7	0
25	7.8	0
26	7.8	0
27	14.1	0
28	14.1	0
29	14.8	0
30	14.8	0
31	12.7	0
32	13.6	0
33	12.6	0
34	13.6	0
35	13.6	0
36	13.3	0
37	11.6	0
38	12.3	0
39	13.2	0
40	13.6	0
41	12.8	0
42	13.6	0
43	14.6	0
44	11.2	0
45	7.9	0
46	5.5	0
47	7.9	0
48	4.3	0
49	15.8	0
50	14.4	0
51	15.6	0
52	13.7	0
53	10.5	0
54	9.7	0
55	10.1	0
56	10.1	0
57	10.1	0
58	13.7	0
59	9.2	0
60	9.4	0
61	10.7	0
62	10.5	0
63	9.9	0
64	16.4	0
65	12.8	0
66	12.7	0
67	21.7	0
68	21.9	0
69	22.0	0
70	19.9	0
71	20.9	0
72	20.7	0
73	20.8	0
74	20.9	0
75	20.9	0
76	20.6	0
77	20.5	0
78	19.7	0
79	19.2	0
80	18.2	0
81	21.8	0
82	18.8 18.8	0
83 84	18.9	0
85	18.0	0
86	20.5	0
87	18.6	0
88	14.2	0
89	17.6	0
90	17.6	0
91	16.5	0
92	18.6	0
93	16.7	0
94	15.7	0
95	17.8	0
96	17.7	0
96	18.3	0
98	19.0	0
99	16.6	0
100	17.6	0
100	17.6	0
101	17.4	0
103	17.7	0
103	17.7	0
105	17.9	0
106	21.6	0
107	23.4	0
107	23.6	0
109	23.9	0
110	24.6	0
111	22.8	0
112	23.9	0
113	24.5	0
-		-

114		24.6	0	
115		25.3	0	
116		25.5	0	
117		25.6	0	
118 119		22.2 22.4	0	
120		21.4	0	
121		7.8	0	
122		7.7	0	
123		7.9	0	
124		9.2	0	
125 126		9.0 8.8	0	
126		7.4	0	
128		7.2	0	
129		9.6	0	
130		6.3	0	
131		6.7	0	
132		6.7 9.1	0	
133 134		13.9	0	
135		13.9	0	
136		12.1	0	
137		13.4	0	
138		19.0	0	
139		17.7	0	
140 141		17.7 14.5	0	
142		18.2	0	
143		17.9	0	
144		12.5	0	
145		16.6	0	
146		17.3	0	
147 148		18.8 19.0	0	
148		19.0	0	
150		19.4	0	
20	1.Fl	39.9	0.0	
1		3.8	0	
2		3.9	0	
3		3.9	0	
4 5		3.1	0	
6		3.1	0	
7		4.0	0	
8		4.0	0	
9		4.6	0	
10		7.7	0	
11 12		7.8 11.6	0	
13		16.9	0	
14		16.9	0	
15		16.9	0	
16		12.0	0	
17 18		6.5 6.5	0	
19		9.8	0	
20		9.9	0	
21		10.1	0	
22		7.6	0	
23		7.8	0	
24 25		9.1 17.5	0	
26		17.6	0	
27		17.7	0	
28		17.2	0	
29		17.5	0	
30		17.4 15.5	0	
31 32		17.0	0	
33		16.3	0	
34		16.2	0	
35		15.7	0	
36		15.2	0	
37 38		15.6 14.8	0	
39		15.6	0	
40		14.4	0	
41		14.5	0	
42		14.8	0	
43		12.7	0	
44 45		12.4 12.4	0	
46		8.6	0	
47		10.8	0	
48		8.5	0	
49		22.5	0	
50		22.2	0	
51 52		20.0 14.0	0	
53		13.2	0	
54		13.1	0	
55		16.6	0	
56		17.2	0	
57		15.6	0	
58 59		16.0 18.5	0	
60		16.6	0	
61		18.3	0	
62		17.1	0	
63		16.4	0	
64		19.5	0	
65 66		20.3 20.4	0	
67		16.5	0	
			-	

68 69		16.5 12.6	0
70		19.4	0
71		19.9	0
72 73		20.4 22.7	0
74		23.5	0
75 70		24.8	0
76 77		26.1 25.9	0
78		25.6	0
79 80		23.5 24.5	0
81		26.6	0
82 83		23.5 23.4	0
84		23.2	0
85		22.6	0
86 87		24.4 23.7	0
88		24.6	0
89 90		23.0 21.4	0
91		16.3	0
92 93		18.2 15.9	0
94		9.7	0
95 96		12.3 15.2	0
97		10.4	0
98 99		10.3 10.2	0
100		9.8	0
101		9.5	0
102 103		9.3 15.3	0
104		15.3	0
105 106		14.3 13.1	0
107		15.9	0
108 109		16.3 20.6	0
110		21.0	0
111 112		18.8 19.4	0
113		19.7	0
114 115		19.7 20.5	0
116		20.7	0
117		20.8	0
118 119		22.2 22.0	0
120		22.2	0
121 122		5.4 5.3	0
123		5.9	0
124 125		6.3 6.3	0
126		6.9	0
127 128		4.9 5.7	0
129		8.2	0
130 131		5.2 5.1	0
132		5.0	0
133 134		6.0 7.7	0
135		8.0	0
136 137		12.0 10.3	0
138		10.2	0
139 140		10.0 9.5	0
141		9.1	0
142 143		10.9 10.0	0
144		8.9	0
145 146		15.0 13.4	0
147		13.5	0
148		14.8	0
149 150		10.2 10.3	0
21	1.Fl	39.9	0.0
1 2		6.0 5.8	0
3		5.9	0
4 5		6.6 6.7	0
6		6.8	0
7 8		7.0 7.2	0
9		7.8	0
10 11		9.8 9.7	0
12		15.3	0
13 14		18.5 18.2	0
15		17.9	0
16 17		14.5 12.2	0
18		10.4	0
19 20		15.6 15.9	0
21		16.1	0

22	21.7	0
23	21.9	0
24	21.9	0
25	22.9	0
26	22.9	0
27	23.0	0
28	21.4	0
29	21.4	0
30	21.3	0
31	20.2	0
32	19.9	0
33	20.0	0
34	19.7	0
35	17.9	0
36	19.2	0
37	18.5	0
38	18.1	0
39	18.3	0
40	17.4	0
41	16.6	0
42	15.9	0
43	14.1	0
44	14.1	0
45	13.9	0
46	10.9	0
47	13.0	0
48	12.9	0
49	23.2	0
50	22.3	0
51	20.7	0
52	17.0	0
53 54	16.8 21.5	0
55	20.7	0
56	19.8	0
57	19.8	0
58	17.0	0
59	18.9	0
60	16.8	0
61	19.7	0
62	19.2	0
63	16.8	0
64	18.4	0
65	18.3	0
66	18.2	0
67	11.0	0
68	11.5	0
69	11.6	0
70	16.7	0
71	15.8	0
72 73	16.8 17.8	0
74	20.9	0
75	22.9	0
76	23.0	0
77	23.4	0
78	23.5	0
79	24.2	0
80	24.3	0
81	24.4	0
82	25.2	0
83	25.3	0
84	24.4	0
85	26.1	0
86	26.3	0
87	25.2	0
88	17.7	0
89 90	11.2	0
91	10.4 11.7	0
92	11.6	0
93	15.0	0
94	9.1	0
95	10.4	0
96	10.5	0
97	13.7	0
98	13.6	0
99	13.3	0
100	13.0	0
101	12.7	0
102	12.6	0
103 104	14.1	0
104	11.7 11.1	0
106	10.7	0
107	13.5	0
108	14.7	0
109	15.8	0
110	18.1	0
111	15.5	0
112	16.0	0
113	16.2	0
114	15.8	0
115	16.8	0
116	16.9	0
117	16.7	0
118	17.0	0
119	17.0	0
120 121	17.7	0
121	3.6 3.8	0
123	4.7	0
124	5.1	0
125	4.9	0
126	4.8	0

127 128		4.0 3.8	0	
129 130 131		6.7 4.1 4.1	0 0 0	
132 133 134		4.0 4.7 6.1	0 0 0	
135 136 137		7.3 9.7 7.9	0 0 0	
138 139 140		8.2 8.9 8.2	0 0	
141 142 143		6.5 9.5 8.2	0 0	
$\frac{144}{145}$		5.9 11.5	0	
146 147 148		11.5 11.4 7.7	0 0	
149 150 22	1.Fl	7.4 7.3 40.4	0 0 0.0	
1 2 3		6.8 6.8 6.9	0 0 0	
4 5 6		7.4 7.5 7.5	0 0 0	
7 8 9		8.2 8.4 9.0	0 0 0	
10 11 12		10.7 10.9 16.7	0 0 0	
13 14 15		17.0 17.7 18.1	0 0 0	
16 17 18		16.6 19.0 19.1	0 0 0	
19 20 21		20.1 20.2 18.1	0 0 0	
22 23 24		23.8 24.1 24.3	0 0	
25 26 27		25.7 25.6 25.9	0 0	
28 29 30		24.3 24.1 23.9	0 0 0	
31 32 33		22.6 22.7 22.5	0 0	
34 35 36		21.2 21.7 21.5	0 0	
37 38 39		20.7 20.5	0 0	
40 41 42		20.4 18.7 18.0	0	
43 44		17.2 17.6 17.7	0 0 0	
45 46 47		14.7 12.1 13.9	0 0	
48 49 50		13.6 25.3 25.2	0 0	
51 52 53		25.0 28.8 23.3	0 0 0	
54 55 56		23.0 18.6 17.6	0 0 0	
57 58 59		15.5 17.2 19.2	0 0 0	
60 61 62		17.1 17.0 18.0	0 0 0	
63 64 65		15.6 15.6 16.8	0 0 0	
66 67 68		16.7 9.4 9.4	0 0	
69 70 71		9.4 14.6 12.4	0 0	
72 73 74		17.4 15.3 16.5	0 0	
75 76 77		17.6 20.5 20.7	0 0	
78 79 80		21.0 21.6 21.7	0 0 0	

81		21.1	0
82 83		21.1 21.7	0
84 85		22.9 23.9	0
86 87		24.2 24.0	0
88 89		9.2 8.4	0
90 91		8.0 9.6	0
92 93		7.3 9.0	0
94 95		6.3 7.3	0
96 97		7.4 13.5	0
98 99		13.3 13.2	0
100 101		12.8 12.7	0
102 103		12.6 14.3	0
104 105		14.3 14.3	0
106 107		10.2 12.6	0
108 109		14.1 14.5	0
110 111		17.0 14.2	0
112 113		14.8 15.0	0
114		14.3 15.4	0
115 116 117		15.4 15.5 15.1	0
118		15.2	0
119 120 121		15.1 15.9	0
121 122 123		3.5 3.6 4.8	0 0
123 124 125		4.8 5.5 5.5	0
126 127		5.4 4.5	0
128 129		4.5 6.9	0
130 131		3.2 3.3	0
132 133		4.6 4.8	0
134 135		6.8 6.8	0
136 137		9.1 9.7	0
138 139		7.6 7.0	0
140 141		6.4 5.7	0
142 143		7.5 6.3	0
144 145		5.4 11.4	0
146 147		8.8 8.8	0
148 149		6.8 6.6	0
$\frac{150}{23}$	1.Fl	6.2 39.9	0.0
1 2		7.5 7.5	0
3 4		7.5 10.5	0
5 6		10.7 10.7	0
7 8		9.2 9.5	0
9 10		12.3 12.1	0
11 12		12.5 18.8	0
13 14		17.7 17.3	0
15 16		17.0 18.0	0
17 18		16.9 17.8	0
19 20 21		20.0	0 0 0
22 23		18.0	0
24		18.4 18.6	0
25 26 27		22.7 23.6 24.5	0
28 29		26.3 26.1	0
30 31		26.1 26.2 25.0	0
32 33		25.1 24.9	0
34		23.0	0

0.7	20.0	
35	23.9	0
36	23.8 22.8	0
37 38	22.8	0
39	22.5	0
40	23.3	0
41	21.4	0
42	18.8	0
43	17.8	0
44	17.4	0
45 46	15.7 13.1	0
47	15.1	0
48	14.4	0
49	23.2	0
50	23.1	0
51	22.9	0
52	26.3	0
53	24.2	0
54	22.4	0
55	17.9	0
56	19.0	0
57	18.6	0
58	15.3	0
59	17.4	0
60	14.9	0
61	11.5	0
62	11.1	0
63	13.2	0
64	8.5	0
65	14.4	0
66	14.3	0
67	8.3	0
68	8.3	0
69	8.1	0
70	12.8	0
71	11.8	0
72	16.1	0
73	15.7	0
74	15.2	0
75	15.7	0
76	18.7	0
77	18.7	0
78	17.3	0
79	19.6	0
80 81	19.7 16.6	0
82	18.9	0
83	20.7	0
84	20.7	0
85	21.6	0
86	21.3	0
87	21.4	0
88	7.7	0
89	7.3	0
90	6.9	0
91	6.6	0
92	6.7	0
93	6.7	0
94	4.6	0
95	5.6	0
96	5.7	0
97	7.6	0
98	8.4	0
99	8.2	0
100 101	8.0 7.9	0
101	7.8	0
103	8.7	0
104	14.2	0
105	14.2	0
106	9.0	0
107	11.6	0
108	12.8	0
109	13.9	0
110	16.1	0
111	13.2	0
112	13.9	0
113	14.0	0
114 115	13.2	
	14.4	0
116 117	14.5 13.9	0
118	13.8	0
119	13.8	0
120	14.6	0
121	3.2	0
122	2.3	0
123	3.4	0
124	5.7	0
125	5.7	0
126	5.7	0
127	4.7	0
128	4.7	0
129	7.2	0
130	3.6	0
131	3.7	0
132	3.8	0
133	5.2	0
134	7.4	0
135 136	7.4 8.6	0
136	8.6 9.5	0
138	7.4	()
138 139	7.4 6.2	0

140 141 142 143 144 145 146 147 148 149 150 24	1.Fl	5.7 5.3 7.3 5.9 4.4 10.4 8.6 8.5 6.1 5.9 5.4 38.9	0 0 0 0 0 0 0 0 0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17		15.7 15.7 14.7 14.5 14.6 14.9 13.1 18.6 19.1 19.2 14.7 14.2	0 0 0 0 0 0 0 0 0 0 0 0
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33		18.7 19.2 18.5 17.7 17.9 19.7 19.5 22.6 22.9 23.1 23.0 23.3 22.3 24.1 24.7 24.8	0 0 0 0 0 0 0 0 0 0 0 0
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48		25.4 25.6 25.7 26.3 26.2 23.6 22.5 21.7 14.5 13.5 13.1 16.2 15.9	0 0 0 0 0 0 0 0 0 0 0
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63		18.4 18.2 18.2 13.0 11.9 11.6 9.9 9.8 9.7 9.2 9.0 9.6 9.5 9.5	0 0 0 0 0 0 0 0 0 0 0
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78		8.5 13.1 12.9 6.4 6.3 11.0 8.7 10.9 13.9 13.1 13.8 15.9 15.5	0 0 0 0 0 0 0 0 0 0
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93		16.6 16.3 11.4 16.4 17.3 14.3 17.9 16.9 12.7 5.7 5.1 4.8 5.0 5.1 5.3	0 0 0 0 0 0 0 0 0 0 0

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 1112 113 114 115 116 117 118 119 120 121 123 124 125 126 127 128 129 130 131 131 131 131 131 132 133 134 135 136 137 138 139 140 141 141 142 143 144 145 146 147 148 149 159 160 170 180 180 190 190 190 190 190 190 190 19	1.Fl	3.5 4.3 5.1 6.9 7.1 7.1 7.0 6.8 6.7 7.1 1.1 9.9 8.8 9.8 11.7 11.3 12.7 10.6 7.9 9.1 11.3 12.7 10.6 6.5 8.1 8.3 7.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3	
46 47		22.0 22.1	0

48	21.8	0
49	15.4	0
50	15.3	0
51	10.8	0
52	9.7	0
53	8.8	0
54	8.6	0
55	10.6	0
56	10.5	0
57	10.3	0
58	8.9	0
59	8.8	0
60	9.7	0
61	7.6	0
62	7.6	0
63	11.4	0
64	6.8	0
65	8.5	0
66	12.7	0
67 68	5.1 5.2	0
69	5.2 5.3	0
70	11.4	0
71	8.9	0
72	11.3	0
73	15.1	0
74	13.0	0
75	13.1	0
76	14.0	0
77	13.5	0
78	12.6	0
79	14.6	0
80	14.1	0
81	9.5	0
82	14.4	0
83	15.1	0
84	12.3	0
85	15.6	0
86	14.3	0
87	10.7	0
88	4.5	0
89	4.3	0
90	4.2	0
91	5.2	0
92	5.4	0
93	5.4	0
94	2.6	0
95	4.1	0
96	4.5	0
97	7.1	0
98 99	6.9 6.9	0
100	6.8	0
101	6.7	0
102	6.6	0
103	7.1	0
104	9.9	0
105	9.9	0
106	8.6	0
107	9.5	0
108	11.0	0
109	11.3	0
110	12.8	0
111	10.2	0
112	10.9	0
113	10.8	0
114	10.0	0
115	11.4	0
116	9.7	0
117	8.1	0
118 119	10.1	0
119 120	6.8 8.2	0
120	0.8	0
121	0.8	0
123	2.5	0
124	4.1	0
125	4.1	0
126	4.2	0
127	3.1	0
128	3.1	0
129	5.8	0
130	2.1	0
131	2.3	0
132	2.4	0
133	3.7	0
134	4.4	0
135	7.1	0
136	8.4	0
137	8.5 6.0	0
138 139	6.0 5.0	0
139	5.0 4.3	0
140	3.6	0
142	5.6	0
143	3.9	0
144	2.6	0
145	9.3	0
146	6.9	0
147	6.7	0
148	3.3	0
149	3.4	0
150	2.7	0