

Phase II Environmental Site Assessment

225 North Las Posas Road San Marcos, California 92069

March 23, 2021

Prepared for:

City Ventures 3121 Michelson Drive, Suite 150 Irvine, California 92612

Prepared by:

Stantec Consulting Services Inc. 735 E. Carnegie Drive, Suite 280 San Bernardino, CA 92408

Project No.: 185805035

This document entitled Phase II Environmental Site Assessment was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of City Ventures (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

(signature)

Deborah Hernandez

Geologic Staff

Reviewed by

(signature)

Alicia Jansen

Associate Scientist

Approved by

(signature)

Kyle Emerson, PG, CEG

Managing Principal Geologist

Table of Contents

EXE	CUTIVE SU	JMMARY	I
1.0	INTROD	DUCTION	1.1
1.1		SCRIPTION AND OPERATIONS	
1.2		EOLOGY AND HYDROGEOLOGY	
2.0	BACKG	ROUND INFORMATION	2.2
3.0	FIELD II	NVESTIGATION PROGRAM	3.1
3.1		SESSMENT ACTIVITIES	
3.2	FIELD IN	NVESTIGATION	3.1
	3.2.1		
	3.2.2	Soil Vapor Probe Installation and Sampling Procedures	3.2
4.0	LABOR	ATORY TESTING PROGRAM	4.1
5.0	INVEST	IGATION RESULTS	5.1
5.1		DBSERVATIONS	
5.2	ANALYT	FICAL RESULTS	5.1
	5.2.1	Soil Analytical Results	5.1
	5.2.2		5.1
6.0	CONCL	USIONS AND RECOMMENDATIONS	6.1
7.0	LIMITAT	TIONS	7.1
8.0	REFERE	ENCES	8.1

LIST OF TABLES

Table 1 – Summary of Soil Analytical Results

Table 2 - Summary of Soil Vapor Analytical Results

LIST OF FIGURES

Figure 1 – Property Location Map

Figure 2 – Property Details

LIST OF APPENDICES

Appendix A – Summary of GPR Findings Report

Appendix B - Laboratory Data Sheets

Executive Summary

This report documents the methodology and results of a Phase II Environmental Site Assessment (ESA) completed by Stantec Consulting Services Inc. (Stantec) for 2.5 Acres of Vacant Land addressed as 225 North Las Posas Road, San Marcos, California (the "Property"). This scope of work was completed in accordance with the Master Services Agreement with the client (the "MSA"), based on the scope of work set forth in the *Proposal to Conduct Phase II Environmental Site Investigation* dated February 11, 2021. All work shall be completed in accordance with the limitations stated in the Consultant Agreement between City Ventures and Stantec.

Stantec completed a Phase I ESA for the Property in March 2021. That report identified the following recognized environmental conditions (RECs) in connection with the Property:

- Underground Storage Tank (USTs). A 550-gallon diesel UST was reportedly installed at the Property in the northwestern corner of the Property in 1972. No leaks or spills have been reported for the Property; however, the presence of UST onsite constitutes a REC for the Property. Stantec recommended performing a ground penetrating radar (GPR) survey to verify if the UST remains on the Property. In addition, Stantec recommended that a soil and soil vapor assessment be completed at the UST location to evaluate the subsurface conditions beneath the Property.
- Railroad Spurs. Railroad spurs are located adjacent to the north of the Property. Herbicides are commonly applied to railroad alignments, and heavy metals associated with herbicidal application are commonly found in these areas. Due to the presence of the spur, Stantec recommended performing a Phase II subsurface investigation to sample and analyze shallow soil samples along this Property boundary nearest the rail line for the presence of heavy-metals. The need for sampling for these compounds given the intended use is for protection of construction workers during development of the paths when exposed to dust. The second issue is the potential for off-Site removal of soil, which will require profiling by chemical analysis to determine the proper location for disposal.

Based on the results of the Phase I ESA report, Stantec created a scope of work which would address the identified RECs.

Stantec provided the services of a field geologist to supervise and direct all on-site activities. Soil sampling and installation of soil vapor probes was performed between February 22 and March 4, 2021. All field work was performed under the supervision of a State of California registered professional geologist, and included the following activities:

On February 22, 2021, Stantec oversaw a ground penetrating radar (GPR) survey performed by GPRS, a utility subcontractor, to locate any suspected UST or UST-related piping or other anomalies remaining on the Property. The scope of work consisted of scanning a 15' x 30' area of the northwestern portion of the Property. An anomaly which may be a potential UST was

(

i

detected in the northwest portion of the Property at approximately 2 to 4-feet in depth. The location is shown on Figure 2 and the geophysical survey results attached in Appendix A.

• On March 1, 2021, Stantec advanced four soil borings; however, two locations in the western perimeter hit refusal at approximately 2-feet below ground surface (bgs) and were abandoned. Soil samples were collected from two locations (S-1 and S-2) along the northern perimeter at 1, 2, and 3-feet bgs to evaluate the adjacent railroad tracks and submitted for analysis of organochlorine pesticides, lead, and arsenic. The deeper soil samples (2 and 3-feet bgs) were place on hold pending analysis of the shallow soil samples.

Two soil borings (SV-1 and SV-2) were advanced in the vicinity of the anomaly (i.e. potential UST) on the northwestern corner of the Property. Due to difficult drilling conditions (i.e. cobbles), the soil vapor probe for SV-1 was set at 3.5-feet bgs and the soil vapor probe SV-2 was set at 4-feet bgs.

The results of soil samples collected along the northern Property line near the rail line were "non-detect" for arsenic and organochlorine pesticides (OCPs) with the exception of a minor detection of Heptachlor at 0.0014 mg/kg, well below its screening levels for residential uses. Lead was detected at 4.8 and 7.2 milligrams per kilogram (mg/kg) in S-1 and S-2, respectively. Because all detected metals concentrations are within typical California naturally-occurring background concentration ranges, and do not exceed DTSC HERO Note 3 or EPA RSLs for residential use, the adjacent railroad tracks do not represent a REC to the Property and no further assessment appears warranted.

Total Petroleum Hydrocarbons as vapor (TPHv) and various VOCs were detected at low concentrations. These concentrations were all below the most conservative screening level between the USEPA Region 9 RSL and DTSC HERO Note 3 with an attenuation factor of 0.03, with the exception of benzene. Benzene was detected at 5.7 micrograms per cubic meter (μ g/m³) is SV-2 which is above the regulatory screening level with an attenuation factor of 0.03 (3.2 μ g/m³), but below the regulatory screening level with an attenuation factor or 0.001 (97 μ g/m³). Given the concentration was only slightly above the regulatory screening level with an attenuation factor of 0.03 (which is <u>not</u> the official screening level and which has not been adopted by any state agency), and well below the risk-based screening level of 97 μ g/m³, this single detection is considered a *de minimis* condition and no further assessment appears warranted for soil vapor.

The GPR Survey identified an anomaly which may be the 550-gallon UST in the northwest portion of the Property at approximately 2 to 4-feet in depth. Stantec recommends removing and disposing of the UST in accordance with all applicable laws.

The preceding summary is intended for informational purposes only and reading the full body of this report is recommended.

Introduction

1.0 INTRODUCTION

This report documents the methodology and results of a Phase II Environmental Site Assessment (ESA) completed by Stantec Consulting Services Inc. (Stantec) for the property located at 225 North Las Posas Road, City of San Marcos, County of San Diego, California (the "Property"). This scope of work was completed in accordance with the *Proposal to Conduct Phase II Environmental Site Investigation*, dated and approved by the Client on February 11, 2021.

1.1 SITE DESCRIPTION AND OPERATIONS

The Property consists of approximately 2.5 acres of vacant land located at 225 North Las Posas Road in the city of San Marcos, California. Surrounding properties are a mix of residential, commercial/industrial, and vacant properties. A Property location map is illustrated on Figure 1. A Property map illustrating the main features of the Property is provided as Figure 2. Photographs taken during the site reconnaissance visit are provided in Appendix A.

The Assessor Parcel Number (APN) associated with the Property is 19-162-57-00.

1.2 SITE GEOLOGY AND HYDROGEOLOGY

The Property is located within the San Marcos Valley Groundwater Basin. This groundwater basin underlies the San Marcos Valley in northwestern San Diego County. The basin is bound by semi-permeable marine and non-marine deposits and impermeable metamorphic and granitic rock. San Marcos Creek drains to the southwest towards Lake San Marcos. An average annual rainfall is between 11 and 15 inches. Water bearing materials include residuum, which consists of weathered bedrock, and Quaternary alluvium, which consists of sand, clay, gravel, and silt that has a maximum thickness of 175 feet. Wells located within the basin can produce up to 60 gallons of water per minute from the alluvium (DWR, 2003).

Water recharge within the basin mainly occurs through rainfall on the valley floor and ephemeral stream flow. Groundwater typically flows to the southwest and follows San Marcos Creek. Water levels have been measured within 10 feet of the ground surface (DWR, 2003).

According to information obtained from the State Water Resources Control Board (SWRCB) online database (Geotracker) for a site located approximately 1,485 feet to the southeast, groundwater was encountered between approximately 3.21 and 12.48 feet bgs with a groundwater flow direction most frequently to the south southwest (Hargis & Associates, Inc., 2013).

Background Information

2.0 BACKGROUND INFORMATION

Stantec completed a Phase I ESA for the Property in March 2021. That report identified the following recognized environmental conditions (RECs) in connection with the Property:

- Underground Storage Tank (USTs). A 550-gallon diesel UST was reportedly installed at the
 Property in the northwestern corner of the Property in 1972. No leaks or spills have been reported
 for the Property; however, the presence of UST onsite constitutes a REC for the Property. Stantec
 recommended performing a ground penetrating radar (GPR) survey to verify if the UST remains on
 the Property. In addition, Stantec recommended that a soil and soil vapor assessment be
 completed at the UST location to evaluate the subsurface conditions beneath the Property.
- Railroad Spurs. Railroad spurs are located adjacent to the north of the Property. Herbicides are commonly applied to railroad alignments, and heavy metals associated with herbicidal application are commonly found in these areas. Due to the presence of the spur, Stantec recommended performing a Phase II subsurface investigation to sample and analyze shallow soil samples along this Property boundary nearest the rail line for the presence of heavy-metals. The need for sampling for these compounds given the intended use is for protection of construction workers during development of the paths when exposed to dust. The second issue is the potential for off-Site removal of soil, which will require profiling by chemical analysis to determine the proper location for disposal.

Based on the results of the Phase I ESA report, Stantec created a scope of work which would address the identified RECs. The scope of work is discussed in Section 3.2.

Field Investigation Program

3.0 FIELD INVESTIGATION PROGRAM

3.1 PRE-ASSESSMENT ACTIVITIES

The scope of work consisted of the following general elements:

Prior to the commencement of fieldwork activities, Stantec made the following preparations:

- As required by law, Stantec visited the Site to mark the proposed boring locations and acquire a current Underground Service Alert (USA) ticket number prior to commencement of Property drilling activities.
- In accordance with federal OSHA regulations (29 CFR, Section 1910.120), Stantec developed a
 site-specific Health and Safety Plan (HASP) for the subject property. All Stantec personnel and
 subcontractors associated with the project were required to be familiar with, and comply with, all
 provisions of the HASP.

3.2 FIELD INVESTIGATION

Stantec provided the services of a field geologist to supervise and direct all on-site activities. Soil sampling and installation of soil vapor probes was performed between February 22 and March 4, 2021. All field work was performed under the supervision of a State of California registered professional geologist, and included the following activities:

Ground Penetrating Radar Survey

On February 22, 2021, Stantec oversaw a ground penetrating radar (GPR) survey performed by GPRS, a utility subcontractor, to locate any suspected UST or UST-related piping or other anomalies remaining on the Property. The scope of work consisted of scanning a 15'x30' area of the northwestern portion of the Property. An anomaly which maybe a potential UST was detected in the north-west portion of the Property at approximately 2 to 4-feet in depth. A copy of the GPR report is provided in Appendix A.

Railroad Spurs

On March 1, 2021, Stantec advanced four soil borings; however, two locations in the western perimeter hit refusal at approximately 2-feet below ground surface (bgs) and were abandoned. Soil samples were collected from two locations (S-1 and S-2) along the northern perimeter at 1, 2, and 3-feet bgs to evaluate the adjacent railroad tracks and submitted for analysis of organochlorine pesticides, lead, and arsenic. The deeper soil samples (2 and 3-feet bgs) were place on hold pending analysis of the shallow soil samples.

Field Investigation Program

Former 550-Gallon UST

On March 1, 2021, two soil borings (SV-1 and SV-2) were advanced in the vicinity of the anomaly (i.e. potential UST) on the northwestern corner of the Property. Due to difficult drilling conditions (i.e. cobbles), the soil vapor probe for SV-1 was set at 3.5-feet bgs and the soil vapor probe SV-2 was set at 4-feet bgs.

3.2.1 Soil Boring and Sampling Procedures

Hand Auger Borings/Sampling

All four (4) borings were advanced using a 4" hand auger to the respective desired depths. Samples S-1 and S-2 shallow soil samples were collected at 0.5- and 3-feet bgs. Upon extraction of the auger bucket at the prescribed sampling depths, the soils contained therein were packed into laboratory-provided clean 8-ounce glass jars and labeled with the appropriate identification information (boring number, sample depth, sample collection date, and sample collection time). The samples were logged on a chain-of-custody form and placed in an ice-filled cooler for transport to the laboratory.

No soil samples were retrieved from the SV-1 and SV-2 boring locations. Stantec attempted two locations in the western perimeter of the Property; however, due to difficult drilling conditions (i.e. cobbles) the borings were abandoned at 2 feet bgs. SV-1 was advanced to approximately 3.5-feet below ground surface and boring SV-2 was advanced to approximately 4-feet below ground surface. Both borings hit refusal at their before reaching a desired depth of 5-ft bgs and a soil vapor sampling point was installed at their maximum depths.

Field Equipment Cleaning Procedures

To maintain quality control during drilling operations, all hand auger buckets and reusable soil sampling equipment was decontaminated using a triple bucket rinse. Prior to drilling at a given location or sampling interval, all equipment coming in direct contact with soil samples was scrubbed with an Alconox scrub solution followed by a clean tap water rinse and then a final distilled water rinse. The disposable acetate soil sample liners were used for one sampling interval and then discarded.

Investigation-Derived Waste

All soil cuttings generated during the Phase II ESA investigation were placed in single California Department of Transportation-approved 55-gallon steel drum, which are located on the Property. Disposal of the drum is pending.

3.2.2 Soil Vapor Probe Installation and Sampling Procedures

Soil Vapor Probe Installation

As indicated in Section 3.2.1, the soil vapor sample borings were advanced using a 4" hand auger bucket. Following soil sampling, SV-1 and SV-2 were completed with soil vapor sampling points at the prescribed depth intervals. Each sample probe was constructed with an airstone sampling prob set at the 3.5- or 4-foot bgs sampling interval. Each of the sampling screens were connected to the ground surface via

Field Investigation Program

dedicated ¼-inch outer diameter Nylaflow® nylon tubing. The annulus around the exposed probe tip was backfilled with washed #3 silica sand filter pack, totaling approximately 6 inches in height. Above the filter pack, a 3-inch transition zone was constructed using dry bentonite granules. From that point to ground surface, hydrated bentonite granules were utilized to seal the annular space. At the surface, the exposed nylon tubing was capped with tight fitting plastic end-caps and labeled to indicate sampling depth. After placement of the soil vapor sample probes on March 1, 2021 subsurface conditions were allowed to equilibrate for a period of at least 48-hours prior to leak testing and sample collection on March 4, 2021.

Soil Vapor Probe Sampling

Subsurface soil vapor sampling was performed in accordance with the July 2015 Department of Toxic Substances Control (DTSC) "Advisory - Active Soil Gas Investigations" (DTSC Advisory).

Prior to sample collection, a shut-in test was performed on the above-ground sampling train. The sample tubing was evacuated of air to a measured vacuum of approximately 100 inches of water column and the vacuum was sealed in with closed valves on opposite ends of the sampling train. A vacuum gauge connected to the line was observed for at least one minute for any signs of a loss in vacuum. If vacuum loss was identified during the shut-in test, the sampling technician inspected and adjusted the sampling train fittings until the shut-in test showed no vacuum loss.

As specified in the DTSC Advisory, a default purge of 3 volumes of the sampling system was performed prior to sample collection. This process included purging the sampling system (tubing, sample screen, and void space of sand pack and dry bentonite) using a flow rate of 200 milliliters per minute (ml/min) or less while maintaining a low vacuum of 100 inches of water or less. This purging was performed using a SKC sample pump calibrated to 200 ml/min.

Once purging activities were completed, the fitting were adjusted to connect the sampling tubing to the sample collection container. During soil vapor sampling, a leak check was performed using 1,1-difluoroethane (DFA) as a tracer compound. The tracer compound was applied to a clean rag and situated around the monitoring point to evaluate seal integrity. Seal integrity was confirmed by the absence of the tracer compound in the collected samples. All soil vapor samples were collected into 400ml Summa® canisters fitted with 200 ml/min flow controllers. The samples were logged onto a chain-of-custody form with all sample details including collection date and time. All sampling equipment and the chain-of-custody form were shipped to a fixed laboratory for analyses.

Laboratory Testing Program

4.0 LABORATORY TESTING PROGRAM

A total of six (6) soil samples were collected during this investigation and delivered under chain-of-custody to Advanced Technology Laboratories (ATL) based in Signal Hill, California for possible chemical analyses. A total of two (2) soil vapor samples and one replicate were collected during this investigation and delivered under chain-of-custody to H&P Mobile Geochemistry (based out of Carlsbad, California) for Total Petroleum Hydrocarbons as Vapor (TPHv) and VOCs by EPA Method TO-15. ATL and H&P are certified to perform hazardous waste testing by the State of California Department of Health Services, Environmental Laboratory Accreditation Program.

Of the 6 soil samples collected, two (2) soil samples were analyzed for organochlorine pesticides (OCPs) by EPA Method 8081A and arsenic/lead by EPA Method 6010B. All soil samples collected during this investigation were kept on-ice during transit to the laboratory.

Investigation Results

5.0 INVESTIGATION RESULTS

5.1 FIELD OBSERVATIONS

On March 1, 2021, Stantec personnel oversaw the advancement of six (6) soil borings, and the installation of two (2) soil vapor borings within two of these borings at the Property. Soils encountered during this investigation consisted primarily of poorly graded sand and silty sand with large cobbles to a maximum explored depth of four feet bgs. No staining or odorous soils were observed in any borings during this investigation. PID measurements were recorded at 0.0 parts per million by volume (ppmV) within all soils collected. No groundwater was not encountered during this investigation.

5.2 ANALYTICAL RESULTS

Laboratory analytical test results from this assessment are summarized in the attached Table 1 and Table 2, and presented on the laboratory data sheets attached as Appendix B. The laboratory test results from this investigation are discussed below. Soil analytical results were compared to the more conservative value between the DTSC Human and Ecological Risk Office (HERO) Note 3 screening level for residential use (DTSC, 2020) and the EPA Regional Screening Levels (RSL), Region 9 for residential sites (EPA, 2020). Soil vapor analytical results were compared to the more conservative value between the DTSC HERO Note 3 screening levels using an attenuation factor of 0.001 and using an attenuation factor of 0.03 (the latter of which is unpublished and unofficial).

5.2.1 Soil Analytical Results

Arsenic was not detected above the laboratory reporting limits (i.e. non-detect). Lead was detected at 4.8 and 7.2 milligrams per kilogram (mg/kg) in S-1 and S-2, respectively. All detected metals concentrations are within typical California background concentration ranges, and do not exceed DTSC HERO Note 3 or EPA RSLs for residential use. There were no detections of organochlorine pesticides (OCPs) above the laboratory reporting limits (i.e. non-detect) with the exception of a minor detection of Heptachlor at 0.0014 mg/kg, which does not represent an environmental concern.

5.2.2 Soil Vapor Analytical Results

A total of two (2) soil vapor samples and one replicate sample were collected and analyzed during this investigation to characterize possible vapor impacts at the Property.

Total Petroleum Hydrocarbons as vapor (TPHv) and various VOCs were detected at low concentrations including benzene, toluene, p/m-xylenes, trichloroethene (TCE), 1,2,4-Trimethylbenzene, methylene chloride, and carbon disulfide. These concentrations were all below the applicable screening level and below the most conservative screening level between the USEPA Region 9 RSL and DTSC HERO Note 3 with an attenuation factor of 0.03, with the exception of benzene. Benzene was detected at 5.7 micrograms per cubic meter (μ g/m³) is SV-2 which is above the regulatory screening level with an attenuation factor of

Investigation Results

 $0.03~(3.2~\mu g/m^3)$, which is not official, but below the published and applicable regulatory screening level that utilizes an attenuation factor or $0.001~(97~\mu g/m^3)$.

Conclusions and Recommendations

6.0 CONCLUSIONS AND RECOMMENDATIONS

The results of soil samples collected along the northern Property line near the rail line were "non-detect" for arsenic and organochlorine pesticides (OCPs) with the exception of a minor detection of Heptachlor at 0.0014 mg/kg, well below its screening levels for residential uses. Lead was detected at 4.8 and 7.2 milligrams per kilogram (mg/kg) in S-1 and S-2, respectively. Because all detected metals concentrations are within typical California naturally-occurring background concentration ranges, and do not exceed DTSC HERO Note 3 or EPA RSLs for residential use, the adjacent railroad tracks do not represent a REC to the Property and no further assessment appears warranted.

Total Petroleum Hydrocarbons as vapor (TPHv) and various VOCs were detected at low concentrations. These concentrations were all below the most conservative screening level between the USEPA Region 9 RSL and DTSC HERO Note 3 with an attenuation factor of 0.03, with the exception of benzene. Benzene was detected at 5.7 micrograms per cubic meter (μ g/m³) is SV-2 which is above the regulatory screening level with an attenuation factor of 0.03 (3.2 μ g/m³), but below the regulatory screening level with an attenuation factor or 0.001 (97 μ g/m³). Given the concentration was only slightly above the regulatory screening level with an attenuation factor of 0.03 (which is <u>not</u> the official screening level and which has not been adopted by any state agency), and well below the risk-based screening level of 97 μ g/m³, this single detection is considered a *de minimis* condition and no further assessment appears warranted for soil vapor.

The GPR Survey identified an anomaly which may be the 550-gallon UST in the northwest portion of the Property at approximately 2 to 4-feet in depth. Stantec recommends removing and disposing of the UST in accordance with all applicable laws.

Limitations

7.0 LIMITATIONS

The conclusions presented in this report are professional opinions based on data described in this report. The opinions of this report have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location and are subject to the following inherent limitations. Stantec makes no other warranty, either expressed or implied, concerning the conclusions and professional advice that is contained within the body of this report.

Inherent in most projects performed in a heterogeneous subsurface environment, continuing excavation and assessments may reveal findings that are different than those presented herein. This facet of the environmental profession should be considered when formulating professional opinions on the limited data collected on these projects.

This report has been issued with the clear understanding that it is the responsibility of the owner, or their representative, to make appropriate notifications to regulatory agencies. It is specifically not the responsibility of Stantec to conduct appropriate notifications as specified by current County and State regulations.

The information presented in this report is valid as of the date our exploration was performed. Site conditions may degrade with time; consequently, the findings presented herein are subject to change. In the event of any conflict between the terms and conditions of this report and the terms and conditions of the Consultant Agreement between Stantec and City Ventures (the "MSA"), the MSA shall control.

References

8.0 REFERENCES

California Water Resources Control Board, 2019, San Francisco Bay Regional Water Quality Control Board, Environmental Screening Levels, date January 24.

Department of Toxic Substances Control, 2020, Human and Ecologic Risk Office Note 3, dated June.

Stantec Consulting Services Inc, 2021, Phase I Environmental Site Assessment, dated March

State Water Resource Control Board's Geotracker, 2021, website https://geotracker.waterboards.ca.gov/

United Stated Environmental Protection Agency, 2020, Regional Screening Levels, Region 9, dated May.

TABLES

TABLE 1 Summary of Soil Analytical Results 225 Las Posas Avenue, San Marcos California 185805035

Boring Location	Sample ID	Sample Depth	Sample Date		and Lead 010B				OCPs by 8	8081A	
		(feet)	Date	Arsenic	Lead	4,4'-DDD	4,4'-DDE	4,4'-DDT	gamma- Chlordane	Toxaphene	Others
USEPA RSLs (Res	sidential)			0.68	400	1.9	2.0	1.9	NE	0.49	Varies
DTSC HERO Note	3 (Residential)			0.41	80	1.9	23	37	NE	0.45	Varies
California Backgro	California Background Levels (2)			0.6 - 11.0	12.4 - 97.1	NE	NE	NE	NE	NE	Varies
Site Wide	S-1-1	1.0	3/4/21	<1.0	4.8	<0.002	<0.002	<0.002	<0.001	<0.050	<varies< td=""></varies<>
Site Wide	S-2-1 1.0 3/		3/4/21	<1.0	7.2	<0.002	<0.002	<0.002	<0.001	< 0.050	Heptachlor: 0.0014

Notes:

All concentrations reported in miligrams per kilogram (mg/kg). More conservative screening level between USEPA Region 9

(1) - RSL (May, 2020) and DTSC HERO Note 3 (June, 2020)

DTSC - Department of Toxic Substance Control

HERO HHRA - Human and Ecological Risk Office Human Health Risk Assessment

NA - Not Analyzed

NE - Not Established

RSL - Regional Screening Level

USEPA - United States Environmental Protection Agency

OCPs - Organochlorine Pesticides

BOLD Denotes analyte was detected above the laboratory reporting limit

< - Denotes analyte was not detected above the laboratory reporting limit

Yellow shading indicates value above the residential screening level.

TABLE 2 **Summary of Soil Vapor Analytical Results** 225 Las Posas Avenue, San Marcos California

185805035

				VOC by 8260B						
Sample ID	Sample Depth (feet)	Sampling Date	TPHv (C5- C12)	Benzene	Toluene	p/m- Xylenes	TCE	1,2,4- Trimethylbenzene	Various	
Residential Scre	Residential Screening Level (0.03 AF) 1			3.2	10,333	560	16	2,100	Various	
Residential Scre	ening Levels (0.	001 AF) ¹		97	310,00	560	480	63,000	Various	
SV-1	3.5	3/4/21	150	2.9	8.4	3.8	<2.2	<2.0	<various< td=""></various<>	
SV-1 (REP)	3.5	3/4/21	120	2.4	8.8	3.8	<2.2	<2.0	<various< td=""></various<>	
SV-2	4.0	3/4/21	360	5.7	11	4.0	2.2	2.3	Methylene Chloride: 1.6 Carbon Disulfide: 1.4	

Notes:

All concentrations reported in micrograms per cubic meter (µg/m3)
More conservative screening level between USEPA Region 9 RSL (May, 2020) and DTSC HERO Note 3 (June, 2020); San Francisco Bay Regional Water Quality Control Board ESLs (January

(1) - 2019) used for TPH screening.

DTSC - Department of Toxic Substance Control

ESL - Environmental Screening Level

HERO HHRA - Human and Ecological Risk Office Human Health Risk Assessment

NE - Not Established

VOC - Volatile Organic Compounds

TCE - Trichloroethane

BOLD Denotes analyte was detected above the laboratory reporting limit

< - Denotes analyte was not detected above the laboratory reporting limit

FIGURES

Property Boundary

(At original document size of 8.5x11) 1:24,000

Project Location 225 North Las Posas San Marcos, California

Prepared by DH on 2021-02-22 TR by SET on 2021-02-22 IR by AJ on 2021-02-22

Client/Project City Ventures

185805035 Phase I Environmental Site Assessment

Title Property Location Map

Notes
1. Coordinate System: NAD 1983 UTM Zone 11N
2. Data Sources: Stantec, 2021
3. Background: Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, @ OpenStreetMap contributors, and the GIS User Community

Property Boundary Soil Sample Location Soil Vapor Location

(At original document size of 8.5x11) 1:2,000

Project Location 225 North Las Posas San Marcos, California

Prepared by DH on 2021-02-22 TR by SET on 2021-02-22 IR by AJon 2021-02-22

Client/Project City Ventures

185805035 Phase I Environmental Site Assessment

Title
PROPERTY DETAILS

Notes
1. Coordinate System: NAD 1983 UTM Zone 11N
2. Data Sources: Stantec, 2021
3. Background: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Arbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

APPENDIX A SUMMARY OF GPR FINDINGS REPORT

Summary of Scanning for Underground Storage Tanks (UST's)

Prepared For: Stantec

Prepared By:
Ivan Martinez
Ivan.Martinez@GPRSINC.com
Project Manger-West Coast Region | LA/OC
213.215.7183
February 22, 2021

February 22, 2021

Stantec

Attn: Alicia Jansen

Site: 225 Las Posas Road, San Marcos, CA

We appreciate the opportunity to provide this report for our work completed on February 19, 2021.

PURPOSE

The purpose of this project was to search for any suspected underground storage tanks (USTs) or suspected UST-related piping or other anomalies remaining on the property. The scope of work consisted of one location measuring approximately 15'x30'. The interiors of buildings were excluded from the scope of this project. The client marked the desired locations prior to our scanning and our markings were then placed onto the surface using spray paint.

EQUIPMENT

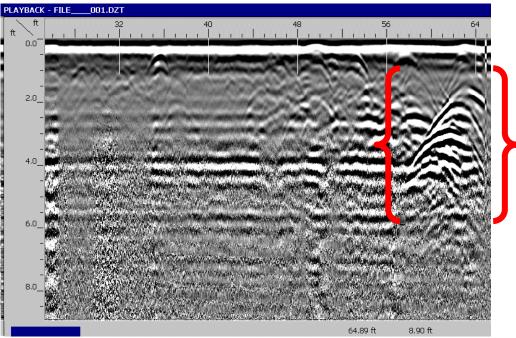
• Underground Scanning GPR Antenna. The antenna with frequencies ranging from 250 MHz-450 MHz is mounted in a stroller frame which rolls over the surface. The surface needs to be reasonably smooth and unobstructed in order to obtain readable scans. Obstructions such as curbs, landscaping, and vegetation will limit the feasibility of GPR. The data is displayed on a screen and marked in the field in real time. The total depth achieved can be as much as 8' or more with this antenna but can vary widely depending on the types of materials being scanned through. Some soil types such as clay may limit maximum depths to 3' or less. As depth increases, targets must be larger in order to be detected and non-metallic targets can be especially difficult to locate. Depths provided should always be treated as estimates as their accuracy can be affected by multiple factors. For more information, please visit: Link

PROCESS

Initial GPR scans were collected in order to evaluate the data and calibrate the equipment. Based on these findings, a scanning strategy is formed, consisting of scanning the entire area in a grid with 16" scan spacing in order to locate any potential UST's that may remain at the site. The GPR data is viewed in real time and anomalies in the data were located and marked on the surface along with their depths using spray paint. Relevant scan examples were saved and will be provided in this report.

LIMITATIONS

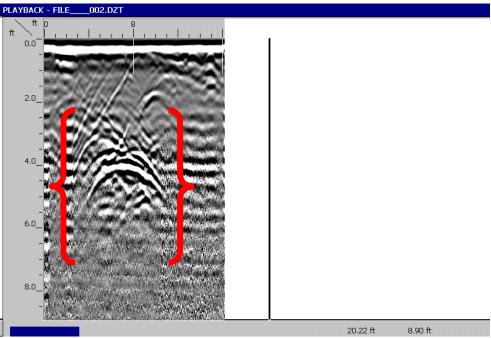
Please keep in mind that there are limitations to any subsurface investigation. The equipment may not achieve maximum effectiveness due to soil conditions, above ground obstructions, reinforced concrete, and a variety of other factors. No subsurface investigation or equipment can provide a complete image of what lies below. Our results should always be used in conjunction with as many methods as possible including consulting existing plans and drawings, exploratory excavation or potholing, visual inspection of above-ground features, and utilization of services such as One Call/811. Depths are dependent on many factors so depth accuracy can vary throughout a site and should be treated as estimates only. Relevant scan examples were saved and will be provided in this report. Thick vegetation limited GPR scan length, see pictures below.


FINDINGS

The subsurface conditions at the time of the scanning allowed for maximum GPR depth penetration of 4' in most areas. The equipment and methods used did detect reactions from potential UST's. Possible UST detected north-west of property lot at approximate 2'-4' in depth. The following pages will provide further explanation of the findings.

Pink outline shows location of possible UST. Thick vegetation prevented GPR from scanning additional area.

Red brackets highlight anomaly detected in the field, potential UST.


GPR Data Screenshot and Photo

225 Las Posas Road, San Marcos, CA

Possible location of UST marked in pink. Fence and vegetation limited GPR scan length.

Red brackets highlight anomaly detected in the field, potential UST.

GPR Data Screenshot and Photo

225 Las Posas Road, San Marcos, CA

CLOSING

GPRS, Inc. has been in business since 2001, specializing in underground storage tank location, concrete scanning, utility locating, and shallow void detection for projects throughout the United States. I encourage you to visit our website (www.gprsinc.com) and contact any of the numerous references listed.

Possible UST detected north-west of property lot at approximate 2'-4' in depth. Thick vegetation limited GPR scan length in the west-east direction.

The GPRS appreciates the opportunity to offer our services, and we look forward to continuing to work with you on future projects. Please feel free to contact us for additional information or with any questions you may have regarding this report.

Signed,

Ivan Martinez

De Sufine

Project Manger—West Coast Region | LA/OC

Direct: 213.215.7183

Ivan.Martinez@GPRSINC.com

www.gprsinc.com

APPENDIX B

Laboratory Data Sheets

ELAP No.: 1838

CSDLAC No.: 10196 ORELAP No.: CA300003

March 09, 2021

Alicia Jansen Stantec

735 E. Carnegie Drive, Suite 280 San Bernardino, CA 92408

Tel: (909) 335-6116 Fax:(909) 335-6120

Re: ATL Work Order Number: 2100475

Client Reference: 185805035, Olson - San Marcos

Enclosed are the results for sample(s) received on March 02, 2021 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Edgar P. Caballero

Laboratory Director

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

nntec Project Number: 185805035, Olson - San Marcos

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 03/09/2021

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
S-1-1	2100475-01	Soil	3/01/21 10:05	3/02/21 11:05
S-2-1	2100475-04	Soil	3/01/21 10:40	3/02/21 11:05

tantec Project Number: 185805035, Olson - San Marcos

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 03/09/2021

Client Sample ID: S-1-1 Lab ID: 2100475-01

Total Metals by ICP-AES EPA 6010B

Analyst: AMP

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes	
Arsenic	ND	1.0	1	B1C0052	03/04/2021	03/04/21 12:52		
Lead	4.8	1.0	1	B1C0052	03/04/2021	03/04/21 12:52		

Organochlorine Pesticides by EPA 8081A

Analyst: AC

organistine restretes by							7 mary st. 710
Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	ND	2.0	1	B1C0056	03/04/2021	03/05/21 10:52	
4,4′-DDE	ND	2.0	1	B1C0056	03/04/2021	03/05/21 10:52	
4,4′-DDT	ND	2.0	1	B1C0056	03/04/2021	03/05/21 10:52	
Aldrin	ND	1.0	1	B1C0056	03/04/2021	03/05/21 10:52	
alpha-BHC	ND	1.0	1	B1C0056	03/04/2021	03/05/21 10:52	
alpha-Chlordane	ND	1.0	1	B1C0056	03/04/2021	03/05/21 10:52	
beta-BHC	ND	1.0	1	B1C0056	03/04/2021	03/05/21 10:52	
Chlordane	ND	8.5	1	B1C0056	03/04/2021	03/05/21 10:52	
delta-BHC	ND	1.0	1	B1C0056	03/04/2021	03/05/21 10:52	
Dieldrin	ND	2.0	1	B1C0056	03/04/2021	03/05/21 10:52	
Endosulfan I	ND	1.0	1	B1C0056	03/04/2021	03/05/21 10:52	
Endosulfan II	ND	2.0	1	B1C0056	03/04/2021	03/05/21 10:52	
Endosulfan sulfate	ND	2.0	1	B1C0056	03/04/2021	03/05/21 10:52	
Endrin	ND	2.0	1	B1C0056	03/04/2021	03/05/21 10:52	
Endrin aldehyde	ND	2.0	1	B1C0056	03/04/2021	03/05/21 10:52	
Endrin ketone	ND	2.0	1	B1C0056	03/04/2021	03/05/21 10:52	
gamma-BHC	ND	1.0	1	B1C0056	03/04/2021	03/05/21 10:52	
gamma-Chlordane	ND	1.0	1	B1C0056	03/04/2021	03/05/21 10:52	
Heptachlor	ND	1.0	1	B1C0056	03/04/2021	03/05/21 10:52	
Heptachlor epoxide	ND	1.0	1	B1C0056	03/04/2021	03/05/21 10:52	
Methoxychlor	ND	5.0	1	B1C0056	03/04/2021	03/05/21 10:52	
Toxaphene	ND	50	1	B1C0056	03/04/2021	03/05/21 10:52	
Surrogate: Decachlorobiphenyl	79.9 %	9 - 80	<u> </u>	B1C0056	03/04/2021	03/05/21 10:52	<u> </u>
Surrogate: Tetrachloro-m-xylene	70.2 %	13 - 77		B1C0056	03/04/2021	03/05/21 10:52	

ntec Project Number: 185805035, Olson - San Marcos

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 03/09/2021

Client Sample ID: S-2-1 Lab ID: 2100475-04

Total Metals by ICP-AES EPA 6010B

Analyst: AMP

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes	
Arsenic	ND	1.0	1	B1C0052	03/04/2021	03/04/21 12:57		
Lead	7.2	1.0	1	B1C0052	03/04/2021	03/04/21 12:57		

Organochlorine Pesticides by EPA 8081A

Analyst: AC

- 8							7 mary st. 71 C
Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
4,4'-DDD	ND	2.0	1	B1C0056	03/04/2021	03/05/21 11:03	
4,4′-DDE	ND	2.0	1	B1C0056	03/04/2021	03/05/21 11:03	
4,4'-DDT	ND	2.0	1	B1C0056	03/04/2021	03/05/21 11:03	
Aldrin	ND	1.0	1	B1C0056	03/04/2021	03/05/21 11:03	
alpha-BHC	ND	1.0	1	B1C0056	03/04/2021	03/05/21 11:03	
alpha-Chlordane	ND	1.0	1	B1C0056	03/04/2021	03/05/21 11:03	
beta-BHC	ND	1.0	1	B1C0056	03/04/2021	03/05/21 11:03	
Chlordane	ND	8.5	1	B1C0056	03/04/2021	03/05/21 11:03	
delta-BHC	ND	1.0	1	B1C0056	03/04/2021	03/05/21 11:03	
Dieldrin	ND	2.0	1	B1C0056	03/04/2021	03/05/21 11:03	
Endosulfan I	ND	1.0	1	B1C0056	03/04/2021	03/05/21 11:03	
Endosulfan II	ND	2.0	1	B1C0056	03/04/2021	03/05/21 11:03	
Endosulfan sulfate	ND	2.0	1	B1C0056	03/04/2021	03/05/21 11:03	
Endrin	ND	2.0	1	B1C0056	03/04/2021	03/05/21 11:03	
Endrin aldehyde	ND	2.0	1	B1C0056	03/04/2021	03/05/21 11:03	
Endrin ketone	ND	2.0	1	B1C0056	03/04/2021	03/05/21 11:03	
gamma-BHC	ND	1.0	1	B1C0056	03/04/2021	03/05/21 11:03	
gamma-Chlordane	ND	1.0	1	B1C0056	03/04/2021	03/05/21 11:03	
Heptachlor	1.4	1.0	1	B1C0056	03/04/2021	03/05/21 11:03	
Heptachlor epoxide	ND	1.0	1	B1C0056	03/04/2021	03/05/21 11:03	
Methoxychlor	ND	5.0	1	B1C0056	03/04/2021	03/05/21 11:03	
Toxaphene	ND	50	1	B1C0056	03/04/2021	03/05/21 11:03	
Surrogate: Decachlorobiphenyl	76.5 %	9 - 80		B1C0056	03/04/2021	03/05/21 11:03	
Surrogate: Tetrachloro-m-xylene	68.4 %	13 - 77		B1C0056	03/04/2021	03/05/21 11:03	

Stantec Project Number: 185805035, Olson - San Marcos

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 03/09/2021

QUALITY CONTROL SECTION

Total Metals by ICP-AES EPA 6010B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B1C0052 - EPA 3050B_S										
Daten D1C0032 - E1A 3030B_S										
Blank (B1C0052-BLK1)					Prepared	: 3/4/2021 A	nalyzed: 3/4/202	1		
Arsenic	ND	1.0	0.12							
Lead	ND	1.0	0.18							
LCS (B1C0052-BS1)					Prepared:	: 3/4/2021 A	nalyzed: 3/4/202	1		
Arsenic	23.6226	1.0	0.12	25.0000		94.5	80 - 120			
Lead	26.3536	1.0	0.18	25.0000		105	80 - 120			
Duplicate (B1C0052-DUP1)		Se	ource: 21004	59-01	Prepared:	: 3/4/2021 A	nalyzed: 3/4/202	1		
Arsenic	5.28544	1.0	0.12		5.09308			3.71	20	
Lead	5.54896	1.0	0.18		5.64196			1.66	20	
Duplicate (B1C0052-DUP2)		Se	ource: 21004	59-16	Prepared:	: 3/4/2021 A	nalyzed: 3/4/202	1		
Arsenic	3.00048	1.0	0.12		3.01202			0.384	20	
Lead	8.28652	1.0	0.18		8.33858			0.626	20	
Matrix Spike (B1C0052-MS1)		Se	ource: 21004	59-01	Prepared:	: 3/4/2021 A	nalyzed: 3/4/202	1		
Arsenic	27.1461	1.0	0.12	25.0000	5.09308	88.2	55 - 117			
Lead	28.6712	1.0	0.18	25.0000	5.64196	92.1	26 - 161			
Matrix Spike (B1C0052-MS2)		Se	ource: 21004	59-16	Prepared:	: 3/4/2021 A	nalyzed: 3/4/202	1		
Arsenic	20.6058	1.0	0.12	25.0000	3.01202	70.4	55 - 117			
Lead	25.0837	1.0	0.18	25.0000	8.33858	67.0	26 - 161			
Matrix Spike Dup (B1C0052-MSD1)		Se	ource: 21004	59-01	Prepared	: 3/4/2021 A	nalyzed: 3/4/202	1		
Arsenic	27.0570	1.0	0.12	25.0000	5.09308	87.9	55 - 117	0.329	20	
Lead	28.4768	1.0	0.18	25.0000	5.64196	91.3	26 - 161	0.680	20	

antec Project Number: 185805035, Olson - San Marcos

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 03/09/2021

Organochlorine Pesticides by EPA 8081A - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B1C0056 - GCSEMI_PCB/PEST_S	
Blank (B1C0056-BLK1)	Prepared: 3/4/2021 Analyzed: 3/5/2021

4,4'-DDD ND 2.0 0.08 4,4'-DDE ND 2.0 0.09 4,4'-DDE ND 2.0 0.09 4,4'-DDE [2C] ND 2.0 0.09 4,4'-DDT ND 2.0 0.10 4,4'-DDT [2C] ND 2.0 0.10 Aldrin ND 1.0 0.09 Aldrin [2C] ND 1.0 0.09 alpha-BHC ND 1.0 0.11 alpha-BHC [2C] ND 1.0 0.11 alpha-Chlordane ND 1.0 0.11 alpha-Chlordane [2C] ND 1.0 0.10 beta-BHC ND 1.0 0.15 beta-BHC [2C] ND 1.0 0.15 beta-BHC [2C] ND 1.0 0.15 Chlordane [2C] ND 8.5 1.1 delta-BHC [2C] ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.11 bieldrin [2C] </th <th>Blank (B1C0056-BLK1)</th> <th></th> <th></th> <th></th>	Blank (B1C0056-BLK1)			
4,4'-DDE ND 2.0 0.09 4,4'-DDT (2C) ND 2.0 0.09 4,4'-DDT (2C) ND 2.0 0.10 4,4'-DDT (2C) ND 2.0 0.10 Aldrin (2C) ND 1.0 0.09 Aldrin (2C) ND 1.0 0.09 alpha-BHC ND 1.0 0.11 alpha-BHC (2C) ND 1.0 0.11 alpha-Chlordane ND 1.0 0.10 alpha-Chlordane (2C) ND 1.0 0.10 alpha-Chlordane (2C) ND 1.0 0.15 beta-BHC ND 1.0 0.15 beta-BHC (2C) ND 1.0 0.15 Chlordane (2C) ND 8.5 1.1 delta-BHC (2C) ND 8.5 1.1 delta-BHC (2C) ND 1.0 0.11 bieldrin ND 2.0 0.09 Endosulfan I (2C) ND 1.0 0.09	4,4'-DDD	ND	2.0	0.08
4,4'-DDE [2C] ND 2.0 0.09 4,4'-DDT ND 2.0 0.10 4,4'-DDT [2C] ND 2.0 0.10 Aldrin ND 2.0 0.10 Aldrin [Arich ND 1.0 0.09 Aldrin [2C] ND 1.0 0.01 alpha-BHC ND 1.0 0.11 alpha-Chlordane ND 1.0 0.11 alpha-Chlordane [2C] ND 1.0 0.10 beta-BHC ND 1.0 0.15 beta-BHC [2C] ND 1.0 0.15 Chlordane [2C] ND 1.0 0.15 Chlordane [2C] ND 1.0 0.15 Chlordane [2C] ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.11 Dieldrin [2C] ND 1.0 0.09 Endsulfan II [2C] ND 1.0 0.09	4,4'-DDD [2C]	ND	2.0	0.08
4,4'-DDT ND 2.0 0.10 4,4'-DDT [2C] ND 2.0 0.10 Aldrin ND 1.0 0.09 Aldrin [2C] ND 1.0 0.09 alpha-BHC ND 1.0 0.11 alpha-BHC [2C] ND 1.0 0.11 alpha-Chlordane ND 1.0 0.10 beta-BHC ND 1.0 0.15 beta-BHC [2C] ND 1.0 0.15 beta-BHC [2C] ND 1.0 0.15 Chlordane ND 8.5 1.1 Chlordane [2C] ND 8.5 1.1 delta-BHC [2C] ND 8.5 1.1 delta-BHC [2C] ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.09 Endsulfar [2C] ND 2.0 0.09 Endsulfar		ND	2.0	0.09
A,4'-DDT [2C]	4,4'-DDE [2C]	ND	2.0	0.09
Aldrin [2C] ND 1.0 0.09 Aldrin [2C] ND 1.0 0.09 alpha-BHC ND 1.0 0.11 alpha-BHC [2C] ND 1.0 0.11 alpha-Chlordane ND 1.0 0.10 alpha-Chlordane ND 1.0 0.10 alpha-Chlordane [2C] ND 1.0 0.10 beta-BHC ND 1.0 0.15 beta-BHC [2C] ND 1.0 0.15 beta-BHC [2C] ND 1.0 0.15 chlordane ND 8.5 1.1 Chlordane [2C] ND 8.5 1.1 Chlordane [2C] ND 1.0 0.11 delta-BHC ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.11 beta-BHC [2C] ND 1.0 0.11 chlordane [2C] ND 1.0 0.11 chlordane [2C] ND 1.0 0.09 Endosulfan I ND 1.0 0.09 Endosulfan I [2C] ND 1.0 0.09 Endosulfan II ND 1.0 0.09 Endosulfan II ND 2.0 0.09 Endosulfan II ND 2.0 0.09 Endosulfan II ND 2.0 0.09 Endosulfan Sulfate ND 2.0 0.09 Endosulfan Sulfate ND 2.0 0.11 Endrin ND 2.0 0.07 Endrin [2C] ND 2.0 0.11 Endrin Sulfate [2C] ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin aldehyde ND 2.0 0.18 Endrin aldehyde ND 2.0 0.18 Endrin ketone ND 2.0 0.18 Endrin ketone ND 2.0 0.06 Endrin ketone ND 2.0 0.06 Endrin ketone ND 1.0 0.12 gamma-BHC ND 1.0 0.12 gamma-Chlordane ND 1.0 0.11 Heptachlor ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide ND 1.0 0.09	4,4'-DDT	ND	2.0	0.10
Aldrin [2C] ND 1.0 0.09 alpha-BHC ND 1.0 0.11 alpha-BHC [2C] ND 1.0 0.11 alpha-Chlordane ND 1.0 0.10 alpha-Chlordane [2C] ND 1.0 0.15 beta-BHC ND 1.0 0.15 beta-BHC [2C] ND 1.0 0.15 Chlordane ND 8.5 1.1 Chlordane [2C] ND 8.5 1.1 delta-BHC ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.09 Endcara [2C] ND 1.0 0.09 Endosulfan II [2C] ND 1.0 0.09 Endosulfan II [2C] ND 2.0 0.11 <t< td=""><td>4,4'-DDT [2C]</td><td>ND</td><td>2.0</td><td>0.10</td></t<>	4,4'-DDT [2C]	ND	2.0	0.10
alpha-BHC ND 1.0 0.11 alpha-BHC [2C] ND 1.0 0.11 alpha-Chlordane ND 1.0 0.10 alpha-Chlordane [2C] ND 1.0 0.10 beta-BHC ND 1.0 0.15 beta-BHC [2C] ND 1.0 0.15 Chlordane ND 8.5 1.1 Chlordane [2C] ND 8.5 1.1 Chlordane [2C] ND 1.0 0.11 delta-BHC ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.09 Endcata-BHC [2C] ND 1.0 0.09 Enddrin [2C] ND 1.0 0.09 Endosulfan I [2C] ND 2.0 0.09 Endosulfan II [2C] ND 2.0 0.11	Aldrin	ND	1.0	0.09
alpha-BHC [2C] ND 1.0 0.11 alpha-Chlordane ND 1.0 0.10 alpha-Chlordane [2C] ND 1.0 0.10 beta-BHC ND 1.0 0.15 beta-BHC [2C] ND 1.0 0.15 Chlordane ND 8.5 1.1 Chlordane [2C] ND 8.5 1.1 delta-BHC ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.09 Endosulfan [2C] ND 2.0 0.09 Endosulfan I [2C] ND 2.0 0.09 Endosulfan II [2C] ND 2.0 0.09 Endosulfan Sulfate [2C] ND 2.0 0.11 Endrin [2C] ND 2.0 0.07	Aldrin [2C]	ND	1.0	0.09
alpha-Chlordane ND 1.0 0.10 alpha-Chlordane [2C] ND 1.0 0.10 beta-BHC ND 1.0 0.15 beta-BHC [2C] ND 1.0 0.15 Chlordane ND 8.5 1.1 Chlordane [2C] ND 8.5 1.1 delta-BHC ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.09 Endosulfan I [2C] ND 2.0 0.09 Endosulfan I [2C] ND 2.0 0.09 Endosulfan II [2C] ND 2.0 0.09 Endosulfan Sulfate ND 2.0 0.01 Endrin [2C] ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 </td <td>alpha-BHC</td> <td>ND</td> <td>1.0</td> <td>0.11</td>	alpha-BHC	ND	1.0	0.11
alpha-Chlordane [2C] ND 1.0 0.10 beta-BHC ND 1.0 0.15 beta-BHC [2C] ND 1.0 0.15 Chlordane ND 8.5 1.1 Chlordane [2C] ND 8.5 1.1 delta-BHC ND 1.0 0.11 delta-BHC [2C] ND 2.0 0.09 Endosulfan [2C] ND 2.0 0.09 Endosulfan II [2C] ND 2.0 0.01 Endosulfan Sulfate [2C] ND 2.0 0.11 Endrin Sulfate [2C] ND 2.0 0.07 Endrin [2C] ND 2.0 0.06	alpha-BHC [2C]	ND	1.0	0.11
beta-BHC ND 1.0 0.15 beta-BHC [2C] ND 1.0 0.15 Chlordane ND 8.5 1.1 Chlordane [2C] ND 8.5 1.1 delta-BHC ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.11 Dieldrin ND 2.0 0.09 Dieldrin [2C] ND 2.0 0.09 Endosulfan I ND 1.0 0.09 Endosulfan II [2C] ND 1.0 0.09 Endosulfan II [2C] ND 2.0 0.09 Endosulfan sulfate ND 2.0 0.11 Endosulfan Sulfate [2C] ND 2.0 0.11 Endrin [2C] ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin aldehyde ND 2.0 0.18 Endrin ketone ND 2.0 0.18 Endrin ketone ND 2.0 0.06 <t< td=""><td>alpha-Chlordane</td><td>ND</td><td>1.0</td><td>0.10</td></t<>	alpha-Chlordane	ND	1.0	0.10
beta-BHC [2C] ND 1.0 0.15 Chlordane ND 8.5 1.1 Chlordane [2C] ND 8.5 1.1 delta-BHC ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.11 Dieldrin ND 2.0 0.09 Dieldrin [2C] ND 2.0 0.09 Endosulfan I ND 1.0 0.09 Endosulfan II [2C] ND 1.0 0.09 Endosulfan II [2C] ND 2.0 0.09 Endosulfan Sulfate ND 2.0 0.01 Endosulfan Sulfate [2C] ND 2.0 0.11 Endrin ND 2.0 0.11 Endrin Sulfate [2C] ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin aldehyde ND 2.0 0.18 Endrin ketone ND 2.0 0.06 Endrin ketone 2.0 0.06 <td< td=""><td>alpha-Chlordane [2C]</td><td>ND</td><td>1.0</td><td>0.10</td></td<>	alpha-Chlordane [2C]	ND	1.0	0.10
Chlordane ND 8.5 1.1 Chlordane [2C] ND 8.5 1.1 delta-BHC ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.11 Dieldrin ND 2.0 0.09 Dieldrin [2C] ND 2.0 0.09 Endosulfan I ND 1.0 0.09 Endosulfan II [2C] ND 1.0 0.09 Endosulfan II [2C] ND 2.0 0.09 Endosulfan Sulfate ND 2.0 0.09 Endosulfan Sulfate ND 2.0 0.11 Endrin ND 2.0 0.11 Endrin Sulfate [2C] ND 2.0 0.07 Endrin lectore ND 2.0 0.07 Endrin aldehyde ND 2.0 0.18 Endrin ketone ND 2.0 0.06 Endrin ketone ND 2.0 0.06 gamma-BHC ND 1.0 0.12 <t< td=""><td>beta-BHC</td><td>ND</td><td>1.0</td><td>0.15</td></t<>	beta-BHC	ND	1.0	0.15
Chlordane [2C] ND 8.5 1.1 delta-BHC ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.11 Dieldrin ND 2.0 0.09 Dieldrin [2C] ND 2.0 0.09 Endosulfan I ND 1.0 0.09 Endosulfan II [2C] ND 2.0 0.09 Endosulfan II [2C] ND 2.0 0.09 Endosulfan Sulfate ND 2.0 0.11 Endosulfan Sulfate [2C] ND 2.0 0.11 Endrin ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin ledehyde ND 2.0 0.18 Endrin aldehyde [2C] ND 2.0 0.18 Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 1.0 0.12 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.11	beta-BHC [2C]	ND	1.0	0.15
delta-BHC ND 1.0 0.11 delta-BHC [2C] ND 1.0 0.11 Dieldrin ND 2.0 0.09 Dieldrin [2C] ND 2.0 0.09 Endosulfan I ND 1.0 0.09 Endosulfan II [2C] ND 1.0 0.09 Endosulfan II [2C] ND 2.0 0.09 Endosulfan sulfate ND 2.0 0.11 Endosulfan Sulfate [2C] ND 2.0 0.11 Endrin ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin aldehyde ND 2.0 0.18 Endrin ketone ND 2.0 0.18 Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 1.0 0.12 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.11	Chlordane	ND	8.5	1.1
delta-BHC [2C] ND 1.0 0.11 Dieldrin ND 2.0 0.09 Dieldrin [2C] ND 2.0 0.09 Endosulfan I ND 1.0 0.09 Endosulfan II [2C] ND 1.0 0.09 Endosulfan II [2C] ND 2.0 0.09 Endosulfan sulfate ND 2.0 0.11 Endosulfan Sulfate [2C] ND 2.0 0.11 Endrin ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin aldehyde ND 2.0 0.18 Endrin ketone ND 2.0 0.18 Endrin ketone ND 2.0 0.06 Endrin ketone ND 2.0 0.06 Endrin ketone ND 1.0 0.12 gamma-BHC ND 1.0 0.12 gamma-BHC (2C] ND 1.0 0.11	Chlordane [2C]	ND	8.5	1.1
Dieldrin ND 2.0 0.09 Dieldrin [2C] ND 2.0 0.09 Endosulfan I ND 1.0 0.09 Endosulfan I [2C] ND 1.0 0.09 Endosulfan II [2C] ND 2.0 0.09 Endosulfan Sulfate ND 2.0 0.11 Endosulfan Sulfate [2C] ND 2.0 0.11 Endrin ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin ladehyde ND 2.0 0.18 Endrin aldehyde [2C] ND 2.0 0.18 Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 2.0 0.06 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.11 gamma-Chlordane ND 1.0 0.11 Heptachlor ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09 </td <td>delta-BHC</td> <td>ND</td> <td>1.0</td> <td>0.11</td>	delta-BHC	ND	1.0	0.11
Dieldrin [2C] ND 2.0 0.09 Endosulfan I ND 1.0 0.09 Endosulfan I [2C] ND 1.0 0.09 Endosulfan II [2C] ND 2.0 0.09 Endosulfan II [2C] ND 2.0 0.11 Endosulfan Sulfate ND 2.0 0.11 Endosulfan Sulfate [2C] ND 2.0 0.07 Endrin ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin ladehyde ND 2.0 0.18 Endrin aldehyde [2C] ND 2.0 0.18 Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 2.0 0.06 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.11 gamma-Chlordane ND 1.0 0.11 Heptachlor ND 1.0 0.10 Heptachlor epoxide ND 1.0	delta-BHC [2C]	ND	1.0	0.11
Endosulfan I ND 1.0 0.09 Endosulfan I [2C] ND 1.0 0.09 Endosulfan II ND 2.0 0.09 Endosulfan II [2C] ND 2.0 0.09 Endosulfan sulfate ND 2.0 0.11 Endosulfan Sulfate [2C] ND 2.0 0.07 Endrin ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin aldehyde ND 2.0 0.18 Endrin aldehyde [2C] ND 2.0 0.18 Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 2.0 0.06 Endrin ketone [2C] ND 1.0 0.12 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.11 gamma-Chlordane [2C] ND 1.0 0.11 Heptachlor [2C] ND 1.0 0.10 Heptachlor epoxide ND 1.0 <td>Dieldrin</td> <td>ND</td> <td>2.0</td> <td>0.09</td>	Dieldrin	ND	2.0	0.09
Endosulfan I [2C] ND 1.0 0.09 Endosulfan II ND 2.0 0.09 Endosulfan II [2C] ND 2.0 0.09 Endosulfan sulfate ND 2.0 0.11 Endosulfan Sulfate [2C] ND 2.0 0.11 Endrin ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin aldehyde ND 2.0 0.18 Endrin aldehyde [2C] ND 2.0 0.18 Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 2.0 0.06 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.11 gamma-Chlordane ND 1.0 0.11 gamma-Chlordane [2C] ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09	Dieldrin [2C]	ND	2.0	0.09
Endosulfan II ND 2.0 0.09 Endosulfan II [2C] ND 2.0 0.09 Endosulfan sulfate ND 2.0 0.11 Endosulfan Sulfate [2C] ND 2.0 0.11 Endrin ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin aldehyde ND 2.0 0.18 Endrin aldehyde [2C] ND 2.0 0.18 Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 2.0 0.06 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.11 gamma-Chlordane ND 1.0 0.11 gamma-Chlordane [2C] ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	Endosulfan I	ND	1.0	0.09
Endosulfan II [2C] ND 2.0 0.09 Endosulfan sulfate ND 2.0 0.11 Endosulfan Sulfate [2C] ND 2.0 0.11 Endrin ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin aldehyde ND 2.0 0.18 Endrin aldehyde [2C] ND 2.0 0.06 Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 2.0 0.06 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.11 gamma-Chlordane ND 1.0 0.11 gamma-Chlordane [2C] ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	Endosulfan I [2C]	ND	1.0	0.09
Endosulfan sulfate ND 2.0 0.11 Endosulfan Sulfate [2C] ND 2.0 0.11 Endrin ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin aldehyde ND 2.0 0.18 Endrin aldehyde [2C] ND 2.0 0.06 Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 2.0 0.06 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.11 gamma-Chlordane ND 1.0 0.11 gamma-Chlordane [2C] ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	Endosulfan II	ND	2.0	0.09
Endosulfan Sulfate [2C] ND 2.0 0.11 Endrin ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin aldehyde ND 2.0 0.18 Endrin aldehyde [2C] ND 2.0 0.08 Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 2.0 0.06 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.12 gamma-Chlordane ND 1.0 0.11 Heptachlor ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	Endosulfan II [2C]	ND	2.0	0.09
Endrin ND 2.0 0.07 Endrin [2C] ND 2.0 0.07 Endrin aldehyde ND 2.0 0.18 Endrin aldehyde [2C] ND 2.0 0.18 Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 2.0 0.06 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.11 gamma-Chlordane ND 1.0 0.11 gamma-Chlordane [2C] ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	Endosulfan sulfate	ND	2.0	0.11
Endrin [2C] ND 2.0 0.07 Endrin aldehyde ND 2.0 0.18 Endrin aldehyde [2C] ND 2.0 0.18 Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 2.0 0.06 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.11 gamma-Chlordane ND 1.0 0.11 gamma-Chlordane [2C] ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	Endosulfan Sulfate [2C]	ND	2.0	0.11
Endrin aldehyde ND 2.0 0.18 Endrin aldehyde [2C] ND 2.0 0.18 Endrin aldehyde [2C] ND 2.0 0.06 Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 2.0 0.06 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.12 gamma-Chlordane ND 1.0 0.11 gamma-Chlordane [2C] ND 1.0 0.11 Heptachlor ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	Endrin	ND	2.0	0.07
Endrin aldehyde [2C] ND 2.0 0.18 Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 2.0 0.06 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.11 gamma-Chlordane ND 1.0 0.11 gamma-Chlordane [2C] ND 1.0 0.10 Heptachlor ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.09 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	Endrin [2C]	ND	2.0	0.07
Endrin ketone ND 2.0 0.06 Endrin ketone [2C] ND 2.0 0.06 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.11 gamma-Chlordane ND 1.0 0.11 gamma-Chlordane [2C] ND 1.0 0.10 Heptachlor ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	Endrin aldehyde	ND	2.0	0.18
Endrin ketone [2C] ND 2.0 0.06 gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.12 gamma-Chlordane ND 1.0 0.11 gamma-Chlordane [2C] ND 1.0 0.11 Heptachlor ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	Endrin aldehyde [2C]	ND	2.0	0.18
gamma-BHC ND 1.0 0.12 gamma-BHC [2C] ND 1.0 0.12 gamma-Chlordane ND 1.0 0.11 gamma-Chlordane [2C] ND 1.0 0.11 Heptachlor ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.09 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	Endrin ketone	ND	2.0	0.06
gamma-BHC [2C] ND 1.0 0.12 gamma-Chlordane ND 1.0 0.11 gamma-Chlordane [2C] ND 1.0 0.11 Heptachlor ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	Endrin ketone [2C]	ND	2.0	0.06
gamma-Chlordane ND 1.0 0.11 gamma-Chlordane [2C] ND 1.0 0.11 Heptachlor ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	gamma-BHC	ND	1.0	0.12
gamma-Chlordane [2C] ND 1.0 0.11 Heptachlor ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	gamma-BHC [2C]	ND	1.0	0.12
Heptachlor ND 1.0 0.10 Heptachlor [2C] ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	gamma-Chlordane	ND	1.0	0.11
Heptachlor [2C] ND 1.0 0.10 Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	gamma-Chlordane [2C]	ND	1.0	0.11
Heptachlor epoxide ND 1.0 0.09 Heptachlor epoxide [2C] ND 1.0 0.09	Heptachlor	ND	1.0	0.10
Heptachlor epoxide [2C] ND 1.0 0.09	Heptachlor [2C]	ND	1.0	0.10
	Heptachlor epoxide	ND	1.0	0.09
Methoxychlor ND 5.0 0.14	Heptachlor epoxide [2C]	ND	1.0	0.09
	Methoxychlor	ND	5.0	0.14

tantec Project Number: 185805035, Olson - San Marcos

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 03/09/2021

Organochlorine Pesticides by EPA 8081A - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B1C0056 - GCSEMI_PCI	D/DEST S (ac	antinuad)								
		manueu)			D	1. 2/4/2021 4	molygod: 2/5/20)21		
Blank (B1C0056-BLK1) - Continue					Prepared	1: 3/4/2021 A	nalyzed: 3/5/20)21		
Methoxychlor [2C]	ND	5.0	0.14							
Toxaphene	ND	50	3.6							
Toxaphene [2C]	ND	50	3.6							
Surrogate: Decachlorobiphenyl	17.33			16.6667		104	9 - 80			S12
Surrogate: Decachlorobiphenyl [14.09			16.6667		84.6	5 - 74			S12
Surrogate: Tetrachloro-m-xylene	14.00			16.6667		84.0	13 - 77			S12
Surrogate: Tetrachloro-m-xylene	12.24			16.6667		73.5	14 - 79			
LCS (B1C0056-BS1)					Prepared	d: 3/4/2021 A	nalyzed: 3/5/20)21		
,4′-DDD	13.2785	2.0	0.08	16.6667		79.7	33 - 88			
,4′-DDD [2C]	12.0927	2.0	0.08	16.6667		72.6	29 - 100			
,4′-DDE	14.1093	2.0	0.09	16.6667		84.7	35 - 87			
,4′-DDE [2C]	11.8755	2.0	0.09	16.6667		71.3	38 - 91			
,4′-DDT	14.7395	2.0	0.10	16.6667		88.4	41 - 94			
,4′-DDT [2C]	13.2905	2.0	0.10	16.6667		79.7	31 - 110			
Aldrin	14.2087	1.0	0.09	16.6667		85.3	35 - 85			L3
lldrin [2C]	12.4015	1.0	0.09	16.6667		74.4	38 - 92			
lpha-BHC	14.2117	1.0	0.11	16.6667		85.3	37 - 86			
lpha-BHC [2C]	12.6410	1.0	0.11	16.6667		75.8	39 - 92			
lpha-Chlordane	16.6013	1.0	0.10	16.6667		99.6	36 - 97			L3
lpha-Chlordane [2C]	14.2848	1.0	0.10	16.6667		85.7	44 - 102			
eta-BHC	13.4835	1.0	0.15	16.6667		80.9	38 - 75			L3
eta-BHC [2C]	12.0630	1.0	0.15	16.6667		72.4	39 - 85			
elta-BHC	14.8322	1.0	0.11	16.6667		89.0	35 - 90			
elta-BHC [2C]	13.4507	1.0	0.11	16.6667		80.7	37 - 98			
Dieldrin	14.8340	2.0	0.09	16.6667		89.0	37 - 87			L3
Dieldrin [2C]	13.0352	2.0	0.09	16.6667		78.2	40 - 91			
Endosulfan I	14.5038	1.0	0.09	16.6667		87.0	32 - 84			L3
indosulfan I [2C]	12.8375	1.0	0.09	16.6667		77.0	33 - 94			
indosulfan II	15.9968	2.0	0.09	16.6667		96.0	40 - 90			L3
Endosulfan II [2C]	13.4575	2.0	0.09	16.6667		80.7	33 - 109			
Endosulfan sulfate	14.5735	2.0	0.11	16.6667		87.4	37 - 82			L3
indosulfan Sulfate [2C]	12.2703	2.0	0.11	16.6667		73.6	29 - 95			
ndrin	17.9922	2.0	0.07	16.6667		108	38 - 95			L3
ndrin [2C]	13.7862	2.0	0.07	16.6667		82.7	36 - 106			
ndrin aldehyde	15.6703	2.0	0.18	16.6667		94.0	44 - 88			L3
Endrin aldehyde [2C]	13.7237	2.0	0.18	16.6667		82.3	33 - 107			
Endrin ketone	14.1745	2.0	0.06	16.6667		85.0	43 - 84			L3
Indrin ketone [2C]	12.4187	2.0	0.06	16.6667		74.5	30 - 97			
amma-BHC	14.6870	1.0	0.12	16.6667		88.1	40 - 88			L3
amma-BHC [2C]	13.5772	1.0	0.12	16.6667		81.5	41 - 95			

tantec Project Number: 185805035, Olson - San Marcos

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 03/09/2021

Organochlorine Pesticides by EPA 8081A - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
	<u></u>									
Batch B1C0056 - GCSEMI_PCI	B/PEST_S (co	ontinued)								
LCS (B1C0056-BS1) - Continued					Prepared	d: 3/4/2021 A	nalyzed: 3/5/20	21		
gamma-Chlordane	16.6208	1.0	0.11	16.6667		99.7	40 - 86			L3
gamma-Chlordane [2C]	13.4162	1.0	0.11	16.6667		80.5	41 - 96			
Heptachlor	13.5527	1.0	0.10	16.6667		81.3	37 - 93			
Heptachlor [2C]	13.6170	1.0	0.10	16.6667		81.7	36 - 99			
Heptachlor epoxide	14.2343	1.0	0.09	16.6667		85.4	40 - 82			L3
Heptachlor epoxide [2C]	12.7558	1.0	0.09	16.6667		76.5	42 - 88			
Methoxychlor	15.1247	5.0	0.14	16.6667		90.7	43 - 96			
Methoxychlor [2C]	13.4747	5.0	0.14	16.6667		80.8	32 - 108			
Surrogate: Decachlorobiphenyl	14.38			16.6667		86.3	9 - 80			S12
Surrogate: Decachlorobiphenyl [11.88			16.6667		71.3	5 - 74			
Surrogate: Tetrachloro-m-xylene	11.50			16.6667		69.0	13 - 77			
Surrogate: Tetrachloro-m-xylene	10.23			16.6667		61.4	14 - 79			
LCS Dup (B1C0056-BSD1)					Prepared	d: 3/4/2021 A	nalyzed: 3/5/20	21		
1,4′-DDD	13.9275	2.0	0.08	16.6667		83.6	33 - 88	4.77	20	
4,4'-DDD [2C]	13.9353	2.0	0.08	16.6667		83.6	29 - 100	14.2	20	
1,4'-DDE	14.8860	2.0	0.09	16.6667		89.3	35 - 87	5.36	20	L3
4,4′-DDE [2C]	13.6267	2.0	0.09	16.6667		81.8	38 - 91	13.7	20	
,4′-DDT	15.3805	2.0	0.10	16.6667		92.3	41 - 94	4.26	20	
4,4′-DDT [2C]	15.3082	2.0	0.10	16.6667		91.8	31 - 110	14.1	20	
Aldrin	14.5072	1.0	0.09	16.6667		87.0	35 - 85	2.08	20	L3
Aldrin [2C]	14.2853	1.0	0.09	16.6667		85.7	38 - 92	14.1	20	
alpha-BHC	15.1353	1.0	0.11	16.6667		90.8	37 - 86	6.29	20	L3
alpha-BHC [2C]	14.6060	1.0	0.11	16.6667		87.6	39 - 92	14.4	20	
alpha-Chlordane	17.1085	1.0	0.10	16.6667		103	36 - 97	3.01	20	L3
alpha-Chlordane [2C]	16.3540	1.0	0.10	16.6667		98.1	44 - 102	13.5	20	
peta-BHC	14.0968	1.0	0.15	16.6667		84.6	38 - 75	4.45	20	L3
peta-BHC [2C]	13.8093	1.0	0.15	16.6667		82.9	39 - 85	13.5	20	
delta-BHC	15.4902	1.0	0.11	16.6667		92.9	35 - 90	4.34	20	L3
delta-BHC [2C]	15.4548	1.0	0.11	16.6667		92.7	37 - 98	13.9	20	T 2
Dieldrin	15.4780	2.0	0.09	16.6667		92.9	37 - 87	4.25	20	L3
Dieldrin [2C]	14.9978	2.0	0.09	16.6667		90.0	40 - 91	14.0	20	T 2
Endosulfan I	15.0365	1.0	0.09	16.6667		90.2	32 - 84	3.61	20	L3
Endosulfan I [2C]	14.8067	1.0	0.09	16.6667		88.8	33 - 94	14.2	20	1.2
Endosulfan II	16.3857	2.0	0.09	16.6667		98.3	40 - 90	2.40	20	L3
Endosulfan II [2C]	15.4722	2.0	0.09	16.6667		92.8	33 - 109	13.9	20	1.2
Endosulfan sulfate Endosulfan Sulfate [2C]	14.9108	2.0	0.11	16.6667		89.5	37 - 82	2.29	20	L3
	14.1350	2.0	0.11	16.6667		84.8	29 - 95 28 - 95	14.1	20	Ι 2
Endrin	18.3477	2.0	0.07	16.6667		110	38 - 95	1.96	20	L3
Endrin [2C]	15.5763	2.0	0.07	16.6667		93.5	36 - 106	12.2	20	1.2
Endrin aldehyde	16.4180	2.0	0.18	16.6667		98.5	44 - 88	4.66	20	L3

tantec Project Number: 185805035, Olson - San Marcos

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 03/09/2021

Organochlorine Pesticides by EPA 8081A - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B1C0056 - GCSEMI_PCI	3/PEST S (co	ntinued)								
Daten Dievoso - Gesterni_i e	B/1 E/31_3 (CO	nanucu)								
LCS Dup (B1C0056-BSD1) - Contin	nued				Preparec	1: 3/4/2021 A	nalyzed: 3/5/202	21		
Endrin aldehyde [2C]	15.9552	2.0	0.18	16.6667		95.7	33 - 107	15.0	20	
Endrin ketone	14.7405	2.0	0.06	16.6667		88.4	43 - 84	3.91	20	L3
Endrin ketone [2C]	14.4113	2.0	0.06	16.6667		86.5	30 - 97	14.9	20	
gamma-BHC	15.5443	1.0	0.12	16.6667		93.3	40 - 88	5.67	20	L3
gamma-BHC [2C]	15.7455	1.0	0.12	16.6667		94.5	41 - 95	14.8	20	
gamma-Chlordane	16.6672	1.0	0.11	16.6667		100	40 - 86	0.278	20	L3
gamma-Chlordane [2C]	15.4060	1.0	0.11	16.6667		92.4	41 - 96	13.8	20	
Heptachlor	14.3153	1.0	0.10	16.6667		85.9	37 - 93	5.47	20	
Heptachlor [2C]	15.7093	1.0	0.10	16.6667		94.3	36 - 99	14.3	20	
Heptachlor epoxide	14.9187	1.0	0.09	16.6667		89.5	40 - 82	4.69	20	L3
Heptachlor epoxide [2C]	14.7078	1.0	0.09	16.6667		88.2	42 - 88	14.2	20	L3
Methoxychlor	15.8030	5.0	0.14	16.6667		94.8	43 - 96	4.39	20	
Methoxychlor [2C]	15.4433	5.0	0.14	16.6667		92.7	32 - 108	13.6	20	
Surrogate: Decachlorobiphenyl	15.01			16.6667		90.1	9 - 80			S12
Surrogate: Decachlorobiphenyl [13.41			16.6667		80.5	5 - 74			S12
Surrogate: Tetrachloro-m-xylene	12.02			16.6667		72.1	13 - 77			
Surrogate: Tetrachloro-m-xylene	11.73			16.6667		70.4	14 - 79			

tantec Project Number: 185805035, Olson - San Marcos

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 03/09/2021

Notes and Definitions

S12 Surrogate recovery outside in-house established limit but within method default criteria.

L3 Laboratory control sample outside in-house established limits but within method criteria.

ND Analyte is not detected at or above the Practical Quantitation Limit (PQL). When client requests quantitation against MDL,

analyte is not detected at or above the Method Detection Limit (MDL)

PQL Practical Quantitation Limit

MDL Method Detection Limit

NR Not Reported

RPD Relative Percent Difference

CA2 CA-ELAP (CDPH)

OR1 OR-NELAP (OSPHL)

Notes:

- (1) The reported MDL and PQL are based on prep ratio variation and analytical dilution.
- (2) The suffix [2C] of specific analytes signifies that the reported result is taken from the instrument's second column.
- (3) Results are wet unless otherwise specified.

Special Instructions Turn Around Time: Sample Temp °C: 5. Page of 100 48 Hour 24 Hour Other: 72 Hour: Same Day: Normal TAT: Libboratory Project Number: 20475Analysis Required DICH >Mannichimich Received By DYKANIC IRAN LONDS >6=Other: Filtered Sample ONICIA JONISTNO STUNKE CUT 7 ONSUM-SAM MAYLUS 5001 5101 1040 050 1035 1045 1130 Sample debbie.hernandez@stantec.com 2 - 5=NaOH Mail Achbic homander Mail 125805055 Sample Date D. Hernandez 311/21 - 4=HNO3 itantec Project Number: # of Cont. roject Manager Preservative (see below) - 3=H,504 Project: Sample Matrix - 2=HCI 501 735 E. Carnegie Drive, Suite 280 Stantec Consulting Services Inc. Jones Environmental - 714-449-9937 **1**=1CE Sample Description/Identification San Bernardino, CA 92408 SV-COMP Cal Science - 714-895-5494 2-2sample Preservative: 2-2-5 5-2-1 pecial Instructions: TAL - 949-261-1022 ATL - 800-499-4388 5-1-3 .aboratory (circle): 909-335-6116 2-1-5 3-1-1 elinguish NWTI

Alicia Jansen Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408

H&P Project: ST030421-11

Client Project: 18585035 / San Marcos

Dear Alicia Jansen:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 04-Mar-21 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Lisa Eminhizer Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the California ELAP and the National Environmental Laboratory Accreditation Conference (NELAC) for the fields of proficiency and analytes listed on those certificates. H&P is approved as an Environmental Testing Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs for the fields of proficiency and analytes included in the certification process and to the extent offered by the accreditation agency. Unless otherwise noted, accreditation certificate numbers, expiration of certificates, and scope of accreditation can be found at: www.handpmg.com/about/certifications. Fields of services and analytes contained in this report that are not listed on the certificates should be considered uncertified or unavailable for certification.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino

Project: ST030421-11 735 E Carnegie Dr., Ste 280 Project Number: 18585035 / San Marcos San Bernardino, CA 92408 Project Manager: Alicia Jansen

Reported: 15-Mar-21 14:17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV-1	E103017-01	Vapor	04-Mar-21	04-Mar-21
SV-1 Rep	E103017-02	Vapor	04-Mar-21	04-Mar-21
SV-2	E103017-03	Vapor	04-Mar-21	04-Mar-21

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino
Project: ST030421-11

735 E Carnegie Dr., Ste 280
Project Number: 18585035 / San Marcos
Reported:
San Bernardino, CA 92408
Project Manager: Alicia Jansen
15-Mar-21 14:17

DETECTIONS SUMMARY

Sample ID: SV-1	Laboratory ID:	E103017-01			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzene	2.9	0.6	ug/m3	EPA TO-15	
Toluene	8.4	3.1	ug/m3	EPA TO-15	
m,p-Xylene	3.8	1.8	ug/m3	EPA TO-15	
TPHv (C5 - C12)	150	100	ug/m3	EPA TO-15	
Sample ID: SV-1 Rep	Laboratory ID:	E103017-02			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzene	2.4	0.6	ug/m3	EPA TO-15	
Toluene	8.8	3.1	ug/m3	EPA TO-15	
m,p-Xylene	3.8	1.8	ug/m3	EPA TO-15	
TPHv (C5 - C12)	120	100	ug/m3	EPA TO-15	
Sample ID: SV-2	Laboratory ID:	E103017-03			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Methylene chloride (Dichloromethane)	1.6	1.4	ug/m3	EPA TO-15	
Carbon disulfide	1.4	1.3	ug/m3	EPA TO-15	
Benzene	5.7	0.6	ug/m3	EPA TO-15	
Trichloroethene	2.2	2.2	ug/m3	EPA TO-15	
Toluene	11	3.1	ug/m3	EPA TO-15	
m,p-Xylene	4.0	1.8	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	2.3	2.0	ug/m3	EPA TO-15	
TPHv (C5 - C12)	360	100	ug/m3	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino

Project: ST030421-11

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 18585035 / San Marcos Project Manager: Alicia Jansen Reported: 15-Mar-21 14:17

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1 (E103017-01) Vapor Sampled: 04-Mar-21	Received: 04	-Mar-21							
1,1-Difluoroethane (LCC)	ND	2.2	ug/m3	1	EC11204	12-Mar-21	12-Mar-21	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	4.0	"	"	"	"	"	"	
Chloromethane	ND	0.8	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	2.8	"	"	"	"	"	"	
Vinyl chloride	ND	0.5	"	"	"	"	"	"	
Bromomethane	ND	1.6	"	"	"	"	"	"	
Chloroethane	ND	1.1	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	2.3	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.6	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	3.1	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	1.4	"	"	"	"	"	"	
Carbon disulfide	ND	1.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.6	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.6	"	"	"	"	"	"	
2-Butanone (MEK)	ND	2.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.6	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	ıı .	
1,1,1-Trichloroethane	ND	2.2	"	"	"	"	"	ıı .	
1,2-Dichloroethane (EDC)	ND	1.6	"	"	"	"	"	"	
Benzene	2.9	0.6	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.3	"	"	"	"	"	"	
Trichloroethene	ND	2.2	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.9	"	"	"	"	"	ıı .	
Bromodichloromethane	ND	2.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	3.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
Toluene	8.4	3.1	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	2.2	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	3.3	"	"	"	"	"	"	
Dibromochloromethane	ND	3.5	"	"	"	"	"	"	
Tetrachloroethene	ND	2.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	3.1	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	2.8	"	"	"	"	"	"	
Chlorobenzene	ND	1.9	"	"	"	"	"	"	
Ethylbenzene	ND	1.8	"	"	"	"	"	"	
m,p-Xylene	3.8	1.8	"	"	"	"	"	"	
Styrene	ND	1.7	"	"	"	"	"	"	
Styrene	ND	1.7							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino

Project: ST030421-11

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 18585035 / San Marcos Reported:
Project Manager: Alicia Jansen 15-Mar-21 14:17

Volatile Organic Compounds by EPA TO-15

		X1 1/10/01/	- Geoen	ciiisti j	, 11100				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1 (E103017-01) Vapor Sampled: 04-Mar-2	1 Received: 04-	Mar-21							
o-Xylene	ND	1.8	ug/m3	1	EC11204	12-Mar-21	12-Mar-21	EPA TO-15	
Bromoform	ND	4.2	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	2.8	"	"	"	"	"	"	
4-Ethyltoluene	ND	2.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	2.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	2.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	2.4	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	2.4	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	2.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene	ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		97.0 %	76-1	131	"	"	"	"	
Surrogate: Toluene-d8		97.6 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		84.8 %	77-1		"	"	"	"	
Surroguie. 4-Bromojiuorovenzene		04.0 /0	//-1	12/					
SV-1 Rep (E103017-02) Vapor Sampled: 04-M	Iar-21 Received	: 04-Mar-21							
1,1-Difluoroethane (LCC)	ND	2.2	ug/m3	1	EC11204	12-Mar-21	12-Mar-21	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	4.0	"	"	"	"	"	"	
Chloromethane	ND	8.0	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	2.8	"	"	"	"	"	"	
Vinyl chloride	ND	0.5	"	"	"	"	"	"	
Bromomethane	ND	1.6	"	"	"	"	"	"	
Chloroethane	ND	1.1	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	2.3	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.6	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	3.1	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	1.4	"	"	"	"	"	"	
Carbon disulfide	ND	1.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.6	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.6	"	"	"	"	"	"	
2-Butanone (MEK)	ND	2.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.6	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	2.2	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	1.6	"	"	"	"	"	"	
Benzene	2.4	0.6	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.3	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280

San Bernardino, CA 92408

Project: ST030421-11

Project Number: 18585035 / San Marcos

Project Manager: Alicia Jansen

Reported: 15-Mar-21 14:17

Volatile Organic Compounds by EPA TO-15

Analyte		Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1 Rep (E103017-02) Vapor	Sampled: 04-Mar-21	Received	: 04-Mar-21							
Trichloroethene		ND	2.2	ug/m3	1	EC11204	12-Mar-21	12-Mar-21	EPA TO-15	
1,2-Dichloropropane		ND	1.9	"	"	"	"	"	"	
Bromodichloromethane		ND	2.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene		ND	1.8	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)		ND	3.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene		ND	1.8	"	"	"	"	"	"	
Toluene		8.8	3.1	"	"	"	"	"	"	
1,1,2-Trichloroethane		ND	2.2	"	"	"	"	"	"	
2-Hexanone (MBK)		ND	3.3	"	"	"	"	"	"	
Dibromochloromethane		ND	3.5	"	"	"	"	"	"	
Tetrachloroethene		ND	2.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)		ND	3.1	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	2.8	"	"	"	"	"	"	
Chlorobenzene		ND	1.9	"	"	"	"	"	"	
Ethylbenzene		ND	1.8	"	"	"	"	"	"	
m,p-Xylene		3.8	1.8	"	"	"	"	"	"	
Styrene		ND	1.7	"	"	"	"	"	"	
o-Xylene		ND	1.8	"	"	"	"	"	"	
Bromoform		ND	4.2	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	2.8	"	"	"	"	"	"	
4-Ethyltoluene		ND	2.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	2.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		ND	2.0	"	"	"	"	"	"	
1,3-Dichlorobenzene		ND	2.4	"	"	"	"	"	"	
1,4-Dichlorobenzene		ND	2.4	"	"	"	"	"	"	
1,2-Dichlorobenzene		ND	2.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene		ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-a	14		96.0 %	76-1	34	"	"	,,	"	
Surrogate: Toluene-d8	7		99.0 %	78-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzen	16		85.0 %	77-1		"	"	"	"	
Surroguie. 4-Dromojiuorobenzen	ic		05.0 /0	//-1	<i>4</i> /					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino

Project: ST030421-11

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408

Project Number: 18585035 / San Marcos Project Manager: Alicia Jansen

Reported: 15-Mar-21 14:17

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-2 (E103017-03) Vapor Sampled: 04-Mar-21	Received: 04	-Mar-21							
1,1-Difluoroethane (LCC)	ND	2.2	ug/m3	1	EC11204	12-Mar-21	12-Mar-21	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	4.0	"	"	"	"	"	"	
Chloromethane	ND	0.8	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	2.8	"	"	"	"	"	"	
Vinyl chloride	ND	0.5	"	"	"	"	"	"	
Bromomethane	ND	1.6	"	"	"	"	"	"	
Chloroethane	ND	1.1	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	2.3	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.6	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	3.1	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	1.6	1.4	"	"	"	"	"	"	
Carbon disulfide	1.4	1.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.6	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.6	"	"	"	"	"	"	
2-Butanone (MEK)	ND	2.4	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.6	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	2.2	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	1.6	"	"	"	"	"	"	
Benzene	5.7	0.6	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.3	"	"	"	"	"	"	
Trichloroethene	2.2	2.2	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.9	"	"	"	"	"	"	
Bromodichloromethane	ND	2.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	3.3	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.8	"	"	"	"	"	"	
Toluene	11	3.1	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	2.2	"	"	"	"	"	"	
2-Hexanone (MBK)	ND	3.3	"	"	"	"	"	"	
Dibromochloromethane	ND	3.5	"	"	"	"	"	"	
Tetrachloroethene	ND	2.8	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	3.1	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	2.8	"	"	"	"	"	"	
Chlorobenzene	ND	1.9	"	"	"	"	"	"	
Ethylbenzene	ND	1.8	"	"	"	"	"	"	
m,p-Xylene	4.0	1.8	"	"	"	"	"	"	
Styrene	ND	1.7	"	"	"	"	"	"	
-									

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280

San Bernardino, CA 92408

Project: ST030421-11

Project Number: 18585035 / San Marcos Project Manager: Alicia Jansen Reported: 15-Mar-21 14:17

Volatile Organic Compounds by EPA TO-15

Analyte		Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-2 (E103017-03) Vapor	Sampled: 04-Mar-21	Received: 04-	Mar-21							
o-Xylene		ND	1.8	ug/m3	1	EC11204	12-Mar-21	12-Mar-21	EPA TO-15	
Bromoform		ND	4.2	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	2.8	"	"	"	"	"	"	
4-Ethyltoluene		ND	2.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene		ND	2.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene		2.3	2.0	"	"	"	"	"	"	
1,3-Dichlorobenzene		ND	2.4	"	"	"	"	"	"	
1,4-Dichlorobenzene		ND	2.4	"	"	"	"	"	"	
1,2-Dichlorobenzene		ND	2.4	"	"	"	"	"	"	
1,2,4-Trichlorobenzene		ND	7.5	"	"	"	"	"	"	
Hexachlorobutadiene		ND	11	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroetha	ıne-d4		95.9 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8			99.0 %		125	"	"	"	"	
Surrogate: 4-Bromofluorobe	enzene		83.4 %		127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino

Project: ST030421-11

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 18585035 / San Marcos Project Manager: Alicia Jansen Reported: 15-Mar-21 14:17

Petroleum Hydrocarbon Analysis by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1 (E103017-01) Vapor Sampled: 04-M	ar-21 Received: 04	-Mar-21							
TPHv (C5 - C12)	150	100	ug/m3	1	EC11204	12-Mar-21	12-Mar-21	EPA TO-15	
SV-1 Rep (E103017-02) Vapor Sampled: 0	04-Mar-21 Received	l: 04-Mar-21							
TPHv (C5 - C12)	120	100	ug/m3	1	EC11204	12-Mar-21	12-Mar-21	EPA TO-15	
SV-2 (E103017-03) Vapor Sampled: 04-M	ar-21 Received: 04	-Mar-21							
TPHv (C5 - C12)	360	100	ug/m3	1	EC11204	12-Mar-21	12-Mar-21	EPA TO-15	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino

Project: ST030421-11 Project Number: 18585035 / San Marcos

735 E Carnegie Dr., Ste 280 Reported: Project Manager: Alicia Jansen San Bernardino, CA 92408 15-Mar-21 14:17

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (EC11204-BLK1)				Prepared & Ana
1,1-Difluoroethane (LCC)	ND	2.2	ug/m3	
Dichlorodifluoromethane (F12)	ND	4.0	"	
Chloromethane	ND	0.8	"	
Dichlorotetrafluoroethane (F114)	ND	2.8	"	
Vinyl chloride	ND	0.5	"	
Bromomethane	ND	1.6	"	
Chloroethane	ND	1.1	"	
Trichlorofluoromethane (F11)	ND	2.3	"	
1,1-Dichloroethene	ND	1.6	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	3.1	"	
Methylene chloride (Dichloromethane)	ND	1.4	"	
Carbon disulfide	ND	1.3	"	
trans-1,2-Dichloroethene	ND	1.6	"	
1,1-Dichloroethane	ND	1.6	"	
2-Butanone (MEK)	ND	2.4	"	
cis-1,2-Dichloroethene	ND	1.6	"	
Chloroform	ND	1.0	"	
1,1,1-Trichloroethane	ND	2.2	"	
1,2-Dichloroethane (EDC)	ND	1.6	"	
Benzene	ND	0.6	"	
Carbon tetrachloride	ND	1.3	"	
Trichloroethene	ND	2.2	"	
1,2-Dichloropropane	ND	1.9	"	
Bromodichloromethane	ND	2.7	"	
cis-1,3-Dichloropropene	ND	1.8	"	
4-Methyl-2-pentanone (MIBK)	ND	3.3	"	
trans-1,3-Dichloropropene	ND	1.8	"	
Toluene	ND	3.1	"	
1,1,2-Trichloroethane	ND	2.2	"	
2-Hexanone (MBK)	ND	3.3	"	
Dibromochloromethane	ND	3.5	"	
Tetrachloroethene	ND	2.8	"	
1,2-Dibromoethane (EDB)	ND	3.1	"	
1,1,1,2-Tetrachloroethane	ND	2.8	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 Project: ST030421-11

Project Number: 18585035 / San Marcos

Reporting

Reported: 15-Mar-21 14:17

RPD

%REC

San Bernardino, CA 92408

Project Manager: Alicia Jansen

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC11204 - TO-15					_		_			
Blank (EC11204-BLK1)				Prepared &	Analyzed:	12-Mar-21				
Chlorobenzene	ND	1.9	ug/m3							
Ethylbenzene	ND	1.8	"							
m,p-Xylene	ND	1.8	"							
Styrene	ND	1.7	"							
o-Xylene	ND	1.8	"							
Bromoform	ND	4.2	"							
1,1,2,2-Tetrachloroethane	ND	2.8	"							
4-Ethyltoluene	ND	2.0	"							
1,3,5-Trimethylbenzene	ND	2.0	"							
1,2,4-Trimethylbenzene	ND	2.0	"							
1,3-Dichlorobenzene	ND	2.4	"							
1,4-Dichlorobenzene	ND	2.4	"							
1,2-Dichlorobenzene	ND	2.4	"							
1,2,4-Trichlorobenzene	ND	7.5	"							
Hexachlorobutadiene	ND	11	"							
Surrogate: 1,2-Dichloroethane-d4	203		"	214		95.1	76-134			
Surrogate: Toluene-d8	204		"	208		98.0	78-125			
Surrogate: 4-Bromofluorobenzene	298		"	363		82.1	77-127			
LCS (EC11204-BS1)				Prepared &	z Analyzed:	12-Mar-21				
Dichlorodifluoromethane (F12)	89	4.0	ug/m3	101		88.7	59-128			
Vinyl chloride	46	0.5	"	52.0		88.9	64-127			
Chloroethane	48	1.1	"	53.6		90.1	63-127			
Trichlorofluoromethane (F11)	95	2.3	"	113		83.8	62-126			
1,1-Dichloroethene	74	1.6	"	80.8		91.2	61-133			
1,1,2-Trichlorotrifluoroethane (F113)	130	3.1	"	155		82.1	66-126			
Methylene chloride (Dichloromethane)	55	1.4	"	70.8		77.1	62-115			
trans-1,2-Dichloroethene	70	1.6	"	80.8		86.3	67-124			
1,1-Dichloroethane	69	1.6	"	82.4		83.5	68-126			
cis-1,2-Dichloroethene	72	1.6	"	80.0		89.6	70-121			
Chloroform	85	1.0	"	99.2		85.8	68-123			
1,1,1-Trichloroethane	100	2.2	"	111		89.9	68-125			
1,2-Dichloroethane (EDC)	73	1.6	"	82.4		88.8	65-128			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST030421-11

Project Number: 18585035 / San Marcos Project Manager: Alicia Jansen Reported: 15-Mar-21 14:17

Volatile Organic Compounds by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

					- 1
Reporting	Snike	Source	%PEC	D D D	- 1
Reporting	Spike	Source	/OKEC	KI D	- 1

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EC11204 - TO-15										
LCS (EC11204-BS1)				Prepared &	k Analyzed:	12-Mar-21				
Benzene	54	0.6	ug/m3	64.8		83.7	69-119			
Carbon tetrachloride	120	1.3	"	128		90.6	68-132			
Trichloroethene	100	2.2	"	110		94.2	71-123			
Toluene	72	3.1	"	76.8		94.2	66-119			
1,1,2-Trichloroethane	98	2.2	"	111		87.8	73-119			
Tetrachloroethene	170	2.8	"	138		121	66-124			
1,1,1,2-Tetrachloroethane	140	2.8	"	140		101	67-129			
Ethylbenzene	86	1.8	"	88.4		96.9	70-124			
m,p-Xylene	87	1.8	"	88.4		97.9	61-134			
o-Xylene	83	1.8	"	88.4		94.2	67-125			
1,1,2,2-Tetrachloroethane	110	2.8	"	140		79.3	65-127			
Surrogate: 1,2-Dichloroethane-d4	209		"	214		97.7	76-134			
Surrogate: Toluene-d8	199		"	208		95.6	78-125			
Surrogate: 4-Bromofluorobenzene	323		"	363		89.0	77-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

Stantec - San Bernardino

Project: ST030421-11

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 18585035 / San Marcos

Project Manager: Alicia Jansen 15-Mar-21 14:17

Petroleum Hydrocarbon Analysis by EPA TO-15 - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EC11204 - TO-15

Blank (EC11204-BLK1) Prepared & Analyzed: 12-Mar-21

TPHv (C5 - C12) ND 100 ug/m3

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino Project: ST030421-11

735 E Carnegie Dr., Ste 280 Project Number: 18585035 / San Marcos Reported:
San Bernardino, CA 92408 Project Manager: Alicia Jansen 15-Mar-21 14:17

Notes and Definitions

LCC Leak Check Compound

ND Analyte NOT DETECTED at or above the reporting limit

MDL Method Detection Limit

%REC Percent Recovery

RPD Relative Percent Difference

All soil results are reported in wet weight.

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs through PJLA, accreditation number 69070 for EPA Method TO-15, EPA Method 8260B and H&P 8260SV.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743 & 2745.

H&P is approved by the State of Louisiana Department of Environmental Quality under the National Environmental Laboratory Accreditation Conference (NELAC) certification number 04138

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 3 4 21
Page 1 of 1

	Lak	Client an	d Projec	t Information			10.0						5	ample	e Rec	eipt (L	ab Us	se Only	y)
Lab Client/Consultant: Start	eL			Project Name / #:	858 50	35						Date	Rec'd:	3/41	21	Contr	ol#:	ID I	19.03
Lab Client Project Manager:				Project Location: Report E-Mail(s):	N. Las Bo	s-s . S	in 1	سح	cs				Project a		030	220			
Lab Client Address: 735 F	rnesie Dri	Suite	280	Report E-Mail(s):								Lab W	Vork Ord			030			
Lab Office Otto Ottoba Ties	rnadino, C	A 924		alicia.j	ansen CS	tante	c.c	m									See	Notes Be	elow
Phone Number: 909 - 654			,,									Rece	ipt Gau	ge ID: 6	02	06		Temp	P-1
Reporting Requirem		1	urnarour	nd Time	San	npler Info	rmatio	n					de Lab:						
Standard Report Level III	Level IV	Stand	lard (7 day	s for preliminary	Sampler(s):	Ba 16	enn	JSL				Recei	pt Note:	s/Tracki	ng #:	77			
Excel EDD Other EDD:		repor	t, 10 days f	or final report)	Signature:	RIL													
CA Geotracker Global ID:		Rush	(specify):_		Date: 3/4	/21											Lat	PM Init	ials: NB
Additional Instructions to Labor	ratory:															70			
* Preferred VOC units (please compaging)	hoose one):		ILI	215-183/5				rd Full List TO-15	st / Project List	□ 10-15	☐ TO-15	TO-15m	natic Fractions	mpound A He	A 8015m	7 ASTM D1945	WB3/62		
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar, Tube, etc.	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List		Oxygenates 8260SV		TPHv as Gas ☐ 8260SVm	Aromatic/Aliphatic Fractions	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945	The P		
5V-1		3/4/21	0950	SV	11	381	-0.82	x				X		X	3.1		7		
SV-1 Rep			0956			372	-1.13	X				X		X			A		
5v-2		4	1013	Ą	do	199	-2.68	X				X					X		
Approved/Relinquished by:	- SI	Company		3/4/2) Date:	Time:	Received by:	Day	BU				Company:			3 Date	1/2/		Time:	6
Approved/Relinquished by:		Company		Date:	Time:	Received by:						Company			Date			Time:	

FMS005 Revision: 3 Revised: 1/15/16 Effective: 1/25/16 Page 1 of 1

Log Sheet: Soil Vapor Sampling with Summa

H&P Project #: STO 3 Site Address: 225 Consultant: SH		Page: 1 of 1 H&P Rep(s): D. Ralkennsh	Reviewed: EC_
Consultant Rep(s):	cia		Scanned: Thomas
Equipment Info Inline Gauge ID#: Pump ID#:	Purge Volume Information PV Amount: PV Includes: Tubing Sand 40% Dry Bent 50%	Leak Check Compound A cloth saturated with LCC is placed around tubing connections and probe seal. This is done for all samples unless otherwise noted.	

	Sample and Summa Information								Prob	e Spe	ecs			Purge & Collection Information							
	Point ID	Summa ID#	Sample Kit ID #		Initial Vac (" Hg)	End / Sample Time	End Vac (" Hg)	Probe Depth (ft)		Tubing OD (in.)	Sand Ht (in.)	Sand Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Shut In Test 60 sec (✓)	Leak Check (✓)	Purge Vol (mL)	Purge Flow Rate (mL/min)	Pump Time (min:sec)	Sample Flow Rate (mL/min)	ProbeVac ☐ Hg ☐ H ₂ O
1	5V-1	381	271	0944	-X"	0950	0	3.5	7	1/8	6	1.5	3	1.5	1	V	359	250	1:48	(200	T
2	SV-1 Rep	372	271	5950	-28	0956	D	3.5	7	1/8	6	1.5	3	1.5	V	V	1359	_	1	4200	O
3	5V-2	199	202	1006	-29	1013	0	4	7	1/8	6	1.5	3	1.5	\checkmark	/	359	200	1:48	4200	0
4		,																			
5																					
6																					
7						III Y															
8																					
9																					
10																					
11												11									
12																					

1	Site Notes such as weather,	visitors, scope deviation	ns, health & safety issu	es, etc. (When making sample	specific notes, reference the line num	nber above):
l						